Compare commits

...

3 Commits

17 changed files with 509 additions and 475 deletions

View File

@ -76,6 +76,7 @@
"valarray": "cpp",
"charconv": "cpp",
"unordered_set": "cpp",
"shared_mutex": "cpp"
"shared_mutex": "cpp",
"*.bak": "cpp"
}
}

View File

@ -62,10 +62,18 @@ add_library(edge_proxy_lib STATIC
src/config/config_manager.cc
#
src/alarm/alarm_service.cc
#
src/rknn/video_service.cc
src/rknn/rkYolov5s.cc
src/rknn/preprocess.cc
src/rknn/postprocess.cc
)
target_include_directories(edge_proxy_lib PUBLIC
/usr/include/opencv4
${CMAKE_CURRENT_SOURCE_DIR}/src
${GST_INCLUDE_DIRS}
/usr/include/rga # rga.h im2d.h
)
target_link_libraries(edge_proxy_lib PRIVATE
@ -77,39 +85,28 @@ target_link_libraries(edge_proxy_lib PRIVATE
pthread
# rknn_api
rknnrt
rockchip_mpp
rga
${OpenCV_LIBS}
${GST_LIBRARIES}
)
target_link_libraries(edge_proxy_lib PUBLIC
Crow
nlohmann_json
)
# ==================================
# Main Application Target
# ==================================
add_executable(edge_proxy
src/main.cpp
)
target_link_libraries(edge_proxy PRIVATE
target_link_libraries(edge_proxy PRIVATE
edge_proxy_lib
)
add_executable(edge_streamer
src/streamer/main_streamer.cpp
)
#
target_link_libraries(edge_streamer PRIVATE
${GST_LIBRARIES}
pthread
)
target_include_directories(edge_streamer PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/src/streamer/include
${GST_INCLUDE_DIRS}
)
# =================================================================
#
# =================================================================
@ -123,31 +120,27 @@ target_include_directories(edge_streamer PRIVATE
# edge_proxy_lib
# )
add_executable(rknn
src/rknn/main.cc
src/rknn/postprocess.cc
src/rknn/preprocess.cc
src/rknn/rkYolov5s.cc
# add_executable(rknn
# src/rknn/main.cc
# src/rknn/postprocess.cc
# src/rknn/preprocess.cc
# src/rknn/rkYolov5s.cc
)
# # )
target_link_libraries(rknn PRIVATE
edge_proxy_lib
${OpenCV_LIBS}
rockchip_mpp
rga
)
target_include_directories(rknn PRIVATE
"${CMAKE_CURRENT_SOURCE_DIR}/services/intrusion-detection/include"
# RKNN SDK
/usr/local/include
# OpenCV 头文件路径 (根据你的 find 命令输出)
/usr/include/opencv4 # opencv2/core/core.hpp
# RGA im2d 的头文件路径 (根据你的 find 命令输出)
/usr/include/rga # rga.h im2d.h
# Paho MQTT /usr/local/include
/usr/local/include
# target_link_libraries(rknn PRIVATE
# edge_proxy_lib
# ${OpenCV_LIBS}
# rockchip_mpp
# rga
# )
# target_include_directories(rknn PRIVATE
# "${CMAKE_CURRENT_SOURCE_DIR}/services/intrusion-detection/include"
# /usr/local/include
# /usr/include/opencv4 # opencv2/core/core.hpp
# /usr/include/rga # rga.h im2d.h
# /usr/local/include
${CMAKE_CURRENT_SOURCE_DIR}/src/streamer/include
${GST_INCLUDE_DIRS}
)
# ${CMAKE_CURRENT_SOURCE_DIR}/src/streamer/include
# ${GST_INCLUDE_DIRS}
# )

View File

@ -1,15 +1,16 @@
{
"config_base_path": "/app/config/",
"alarm_rules_path": "alarms.json",
"config_base_path": "/app/config/",
"data_cache_db_path": "edge_data_cache.db",
"data_storage_db_path": "edge_proxy_data.db",
"device_id": "rk3588-proxy-001",
"log_level": "info",
"mqtt_broker": "tcp://localhost:1883",
"mqtt_client_id_prefix": "edge-proxy-",
"piper_executable_path": "/usr/bin/piper",
"piper_model_path": "/app/models/model.onnx",
"tcp_server_ports": [
12345,
502
12345
],
"web_server_port": 8080
}

View File

@ -1,7 +1,7 @@
{
"modbus_rtu_devices": [
{
"enabled": true,
"enabled": false,
"device_id": "rtu_temp_sensor_lab",
"port_path": "/dev/ttyS7",
"baud_rate": 9600,

BIN
config/edge_data_cache.db Normal file

Binary file not shown.

BIN
config/edge_proxy_data.db Normal file

Binary file not shown.

View File

@ -138,12 +138,25 @@ void AlarmService::check_rule_against_value(AlarmRule& rule, double value, const
default: break;
}
AlarmState& state = m_alarm_states.at(rule.rule_id);
auto it = m_alarm_states.find(rule.rule_id);
if (it == m_alarm_states.end()) {
spdlog::warn("AlarmState for rule '{}' was missing. Creating it on-the-fly.", rule.rule_id);
auto result = m_alarm_states.emplace(
std::piecewise_construct,
std::forward_as_tuple(rule.rule_id),
std::forward_as_tuple(m_io_context)
);
it = result.first; // 'it' 现在指向新创建的元素
}
AlarmState& state = it->second;
if (condition_met) {
// 条件满足
if (state.current_state == AlarmStateType::NORMAL) {
// 状态NORMAL -> PENDING
state.current_state = AlarmStateType::PENDING;
if (rule.debounce_seconds <= 0) {

View File

@ -11,7 +11,7 @@
#include "dataCache/live_data_cache.h"
#include "dataStorage/data_storage.h"
#include "config/config_manager.h"
#include "rknn/video_service.h"
#include "alarm/alarm_service.h"
#include "tts/piper_tts_interface.h"
@ -86,6 +86,33 @@ int main(int argc, char* argv[]) {
}
try {
spdlog::info("Initializing Video Service...");
std::unique_ptr<VideoService> video_service;
const char* model_path = "/app/edge-proxy/models/RK3588/yolov5s-640-640.rknn";
int thread_num = 3;
std::string input_rtsp = "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1301";
std::string output_rtsp = "rtsp://127.0.0.1:8554/processed";
if (true) { //config.isVideoServiceEnabled()
try {
video_service = std::make_unique<VideoService>(
model_path,
thread_num,
input_rtsp,
output_rtsp
);
spdlog::info("VideoService configured. Input: {}, Output: {}",
model_path, output_rtsp);
} catch (const std::exception& e) {
spdlog::error("Failed to initialize VideoService: {}. Video processing will be disabled.", e.what());
video_service.reset(); // 确保为 null
}
} else {
spdlog::warn("VideoService is disabled in configuration.");
}
DataCache data_cache;
LiveDataCache live_data_cache;
MqttClient mqtt_client(config.getMqttBroker(),
@ -156,30 +183,34 @@ int main(int argc, char* argv[]) {
monitor.getCpuUtilization();
boost::asio::steady_timer system_monitor_timer(g_io_context, std::chrono::seconds(15));
// [修改] system_monitor_timer 的绑定
system_monitor_timer.async_wait(std::bind(poll_system_metrics,
std::ref(system_monitor_timer),
std::ref(monitor),
std::ref(mqtt_client),
std::ref(alarm_service) // <--- [新]
std::ref(alarm_service)
));
device_manager.load_and_start(config.getDevicesConfigPath());
// [修改] WebServer 实例化
WebServer web_server(monitor,
device_manager,
live_data_cache,
alarm_service, // <--- [新]
alarm_service,
config.getWebServerPort());
web_server.start();
if (video_service) {
if (video_service->start()) {
spdlog::info("VideoService started successfully.");
} else {
spdlog::error("Failed to start VideoService. Video processing will not run.");
video_service.reset(); // 设置为 null以便在关闭时安全跳过
}
}
boost::asio::signal_set signals(g_io_context, SIGINT, SIGTERM);
signals.async_wait([&](const boost::system::error_code& error, int signal_number) {
spdlog::warn("Interrupt signal ({}) received. Shutting down.", signal_number);
// [修改] 关停顺序
// a. 停止所有数据采集
spdlog::info("[Shutdown] A. Stopping device manager services...");
@ -197,8 +228,15 @@ int main(int argc, char* argv[]) {
spdlog::info("[Shutdown] D. Disconnecting from MQTT broker...");
mqtt_client.disconnect();
spdlog::info("[Shutdown] E. Stopping video Service loop...");
if (video_service) {
spdlog::info("[Shutdown] F. Stopping video service...");
video_service->stop();
}
// e. 最后安全地停止io_context
spdlog::info("[Shutdown] E. Stopping main event loop...");
spdlog::info("[Shutdown] F. Stopping main event loop...");
g_io_context.stop();
});

View File

@ -1,138 +0,0 @@
#include <stdio.h>
#include <memory>
#include <sys/time.h>
#include <thread> // for std::this_thread::sleep_for
#include <chrono> // for std::chrono::milliseconds
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "rknn/rkYolov5s.hpp"
#include "rknnPool.hpp"
const std::string GSTREAMER_PIPELINE =
"rtspsrc location=rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1301 is-live=true latency=0 ! "
"rtph265depay ! h265parse ! mppvideodec ! " // mppvideodec 是 RK 平台的硬解码器
"videoconvert ! video/x-raw,format=BGR ! appsink drop=1";
int main(int argc, char **argv)
{
char *model_name = NULL;
// const char* model_path = "/home/forlinx/rknn-cpp-Multithreading-main/model/RK3588/yolov5s-640-640.rknn";
const char* model_path = "/app/edge-proxy/models/RK3588/yolov5s-640-640.rknn";
// 参数二,模型所在路径/The path where the model is located
// 初始化rknn线程池/Initialize the rknn thread pool
int threadNum = 3;
rknnPool<rkYolov5s, cv::Mat, cv::Mat> testPool(model_path, threadNum);
if (testPool.init() != 0)
{
printf("rknnPool init fail!\n");
return -1;
}
// const char *video_name = "/home/forlinx/Videos/test_video.mp4";
// cv::VideoCapture capture;
// if (strlen(video_name) == 1)
// capture.open((int)(video_name[0] - '0'));
// else
// capture.open(video_name);
setenv("OPENCV_FFMPEG_CAPTURE_OPTIONS", "rtsp_transport;tcp", 1);
printf("Set RTSP transport protocol to TCP\n");
std::string rtsp_url = "rtsp://admin:hzx12345@192.168.1.10:554/Streaming/Channels/1301";
// cv::VideoCapture capture(rtsp_url, cv::CAP_FFMPEG);
cv::VideoCapture capture(GSTREAMER_PIPELINE, cv::CAP_GSTREAMER);
// if (!capture.isOpened())
// {
// printf("Error: Could not open RTSP stream.\n");
// return -1;
// }
// printf("RTSP stream opened successfully!\n");
if (!capture.isOpened())
{
printf("Error: Could not open GStreamer RTSP stream. Check pipeline or RTSP URL.\n");
// 可以打印 GStreamer 错误到 stderr
fprintf(stderr, "GStreamer pipeline used: %s\n", GSTREAMER_PIPELINE.c_str());
return -1;
}
printf("GStreamer RTSP stream opened successfully!\n");
const char* WINDOW_NAME = "RTSP Fullscreen Display";
cv::namedWindow(WINDOW_NAME, cv::WINDOW_NORMAL);
cv::setWindowProperty(WINDOW_NAME, cv::WND_PROP_FULLSCREEN, cv::WINDOW_FULLSCREEN);
struct timeval time;
gettimeofday(&time, nullptr);
auto startTime = time.tv_sec * 1000 + time.tv_usec / 1000;
int frames = 0;
auto beforeTime = startTime;
while (capture.isOpened())
{
cv::Mat img;
// if (capture.read(img) == false)
// break;
if (capture.read(img) == false) {
printf("Failed to read frame from GStreamer stream. Re-attempting...\n");
// 尝试重新打开流,或者等待一段时间
std::this_thread::sleep_for(std::chrono::milliseconds(100));
if (!capture.isOpened()) { // 如果流关闭了,尝试重新打开
capture.open(GSTREAMER_PIPELINE, cv::CAP_GSTREAMER);
if (!capture.isOpened()) {
printf("Failed to re-open GStreamer stream. Exiting.\n");
break;
}
printf("GStreamer stream re-opened successfully!\n");
}
continue; // 继续下一帧
}
if (img.empty()) {
printf("Empty frame received. Skipping.\n");
std::this_thread::sleep_for(std::chrono::milliseconds(10)); // 防止空循环过快
continue;
}
if (testPool.put(img) != 0)
break;
if (frames >= threadNum && testPool.get(img) != 0)
break;
cv::imshow(WINDOW_NAME, img);
if (cv::waitKey(1) == 'q') // 延时1毫秒,按q键退出/Press q to exit
break;
frames++;
if (frames % 120 == 0)
{
gettimeofday(&time, nullptr);
auto currentTime = time.tv_sec * 1000 + time.tv_usec / 1000;
printf("120帧内平均帧率:\t %f fps/s\n", 120.0 / float(currentTime - beforeTime) * 1000.0);
beforeTime = currentTime;
}
}
// 清空rknn线程池/Clear the thread pool
while (true)
{
cv::Mat img;
if (testPool.get(img) != 0)
break;
cv::imshow(WINDOW_NAME, img);
if (cv::waitKey(1) == 'q') // 延时1毫秒,按q键退出/Press q to exit
break;
frames++;
}
gettimeofday(&time, nullptr);
auto endTime = time.tv_sec * 1000 + time.tv_usec / 1000;
printf("Average:\t %f fps/s\n", float(frames) / float(endTime - startTime) * 1000.0);
return 0;
}

View File

@ -1,9 +1,9 @@
#include <stdio.h>
#include <mutex>
#include <chrono> // 用于计时
#include <string> // 使用 std::string
#include <vector> // 使用 std::vector
#include <algorithm> // 使用 std::min/max
// #include <mutex> // 已移除
// #include <chrono> // 已移除
#include <string>
#include <vector>
// #include <algorithm> // 已移除
#include "postprocess.h"
#include "preprocess.h"
@ -15,19 +15,7 @@
#include "opencv2/imgproc/imgproc.hpp"
#include "rknn/rknn_api.h"
// 报警接口函数 (目前只打印信息)
void trigger_alarm(int person_id, const cv::Rect& box) {
printf("[ALARM] Intrusion detected! Person ID: %d at location (%d, %d, %d, %d)\n",
person_id, box.x, box.y, box.width, box.height);
// TODO: 在这里实现真正的报警逻辑,例如发送网络消息、写入数据库等。
}
// 获取当前时间的函数 (返回秒)
double get_current_time_seconds() {
return std::chrono::duration_cast<std::chrono::duration<double>>(
std::chrono::high_resolution_clock::now().time_since_epoch()
).count();
}
// trigger_alarm 和 get_current_time_seconds 已被移至 video_service.cc
static void dump_tensor_attr(rknn_tensor_attr *attr)
{
@ -108,17 +96,10 @@ rkYolov5s::rkYolov5s(const std::string &model_path)
nms_threshold = NMS_THRESH;
box_conf_threshold = BOX_THRESH;
// 初始化跟踪器和入侵检测参数
next_track_id = 1;
intrusion_time_threshold = 3.0; // 报警时间阈值3秒
// 默认设置一个无效的入侵区域,将在第一帧时根据图像大小初始化
intrusion_zone = cv::Rect(0, 0, 0, 0);
// 跟踪器相关的初始化已全部移除
}
void rkYolov5s::set_intrusion_zone(const cv::Rect& zone) {
std::lock_guard<std::mutex> lock(mtx);
this->intrusion_zone = zone;
}
// set_intrusion_zone 已被移除
int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
{
@ -224,97 +205,18 @@ rknn_context *rkYolov5s::get_pctx()
return &ctx;
}
void rkYolov5s::update_tracker(detect_result_group_t &detect_result_group)
// update_tracker 函数已完全移除 (移至 video_service.cc)
// 关键修改:
// 1. 函数签名改变
// 2. 移除了 lock_guard
// 3. 输入参数变为 const cv::Mat&
// 4. 移除了所有 update_tracker 和 绘图(cv::rectangle/putText) 逻辑
// 5. 返回值变为 detect_result_group_t
detect_result_group_t rkYolov5s::infer(const cv::Mat &orig_img)
{
std::vector<cv::Rect> current_detections;
for (int i = 0; i < detect_result_group.count; i++) {
detect_result_t *det_result = &(detect_result_group.results[i]);
if (strcmp(det_result->name, "person") == 0) {
current_detections.push_back(cv::Rect(
det_result->box.left, det_result->box.top,
det_result->box.right - det_result->box.left,
det_result->box.bottom - det_result->box.top));
}
}
// 1. 对于已有的跟踪目标,增加其未见帧数
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ++it) {
it->second.frames_unseen++;
}
// 2. 将当前帧的检测结果与已有的跟踪目标进行匹配
for (const auto& det_box : current_detections) {
bool is_matched = false;
int best_match_id = -1;
double max_iou = 0.3; // IoU阈值用于判断是否为同一目标
for (auto const& [id, person] : tracked_persons) {
// 计算交并比 (Intersection over Union)
double iou = (double)(det_box & person.box).area() / (double)(det_box | person.box).area();
if (iou > max_iou) {
max_iou = iou;
best_match_id = id;
}
}
if (best_match_id != -1) {
// 匹配成功,更新目标信息
tracked_persons[best_match_id].box = det_box;
tracked_persons[best_match_id].frames_unseen = 0;
is_matched = true;
} else {
// 匹配失败,创建新的跟踪目标
TrackedPerson new_person;
new_person.id = next_track_id++;
new_person.box = det_box;
new_person.entry_time = 0;
new_person.is_in_zone = false;
new_person.alarm_triggered = false;
new_person.frames_unseen = 0;
tracked_persons[new_person.id] = new_person;
}
}
// 3. 处理和更新每个目标的状态
double current_time = get_current_time_seconds();
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ++it) {
TrackedPerson& person = it->second;
// 判断人员包围盒是否与入侵区域有交集
bool currently_in_zone = (intrusion_zone & person.box).area() > 0;
if (currently_in_zone) {
if (!person.is_in_zone) {
// 刚进入区域
person.is_in_zone = true;
person.entry_time = current_time;
} else {
// 已在区域内,检查是否超时
if (!person.alarm_triggered && (current_time - person.entry_time) > intrusion_time_threshold) {
person.alarm_triggered = true;
trigger_alarm(person.id, person.box);
}
}
} else {
// 不在区域内,重置状态
person.is_in_zone = false;
person.entry_time = 0;
person.alarm_triggered = false;
}
}
// 4. 移除消失太久的目标
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ) {
if (it->second.frames_unseen > 20) { // 超过20帧未见则移除
it = tracked_persons.erase(it);
} else {
++it;
}
}
}
cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
{
std::lock_guard<std::mutex> lock(mtx);
// std::lock_guard<std::mutex> lock(mtx); // 已移除
cv::Mat img;
cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB);
img_width = img.cols;
@ -369,33 +271,12 @@ cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,
box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
// 更新跟踪器状态
// 首次运行时,根据图像尺寸初始化入侵区域 (设定在画面中央)
if (intrusion_zone.width == 0 || intrusion_zone.height == 0) {
intrusion_zone = cv::Rect(orig_img.cols / 4, orig_img.rows / 4, orig_img.cols / 2, orig_img.rows / 2);
}
update_tracker(detect_result_group);
// 所有 跟踪器(update_tracker) 和 绘图(cv::rectangle/putText) 逻辑均已移除
// 绘制入侵区域
cv::rectangle(orig_img, intrusion_zone, cv::Scalar(255, 255, 0), 2); // 黄色
// 绘制框体和报警状态
for (auto const& [id, person] : tracked_persons) {
// 根据是否触发报警决定颜色 (BGR: 红色 vs 绿色)
cv::Scalar box_color = person.alarm_triggered ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0);
int line_thickness = person.alarm_triggered ? 3 : 2;
cv::rectangle(orig_img, person.box, box_color, line_thickness);
std::string label = "Person " + std::to_string(id);
if (person.is_in_zone) {
label += " (In Zone)";
}
cv::putText(orig_img, label, cv::Point(person.box.x, person.box.y - 10),
cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
}
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
return orig_img;
// 返回原始检测结果
return detect_result_group;
}
rkYolov5s::~rkYolov5s()

View File

@ -3,11 +3,9 @@
#include "rknn_api.h"
#include "opencv2/core/core.hpp"
#include <map> // 用于存储跟踪目标
#include <mutex> // 确保线程安全
#include <string> // 使用 std::string
#include <vector> // 使用 std::vector
#include "postprocess.h"
#include <string>
#include <vector>
#include "postprocess.h" // 包含 detect_result_group_t 的定义
// 前置声明
static void dump_tensor_attr(rknn_tensor_attr *attr);
@ -15,22 +13,13 @@ static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz);
static unsigned char *load_model(const char *filename, int *model_size);
static int saveFloat(const char *file_name, float *output, int element_size);
// 用于跟踪单个目标的结构体
struct TrackedPerson
{
int id; // 唯一ID
cv::Rect box; // 当前位置
double entry_time; // 进入入侵区域的时间戳 (秒)
bool is_in_zone; // 是否在区域内
bool alarm_triggered; // 是否已触发报警
int frames_unseen; // 消失的帧数
};
// 注意TrackedPerson 结构体已被移至 video_service.h
class rkYolov5s
{
private:
int ret;
std::mutex mtx;
// std::mutex mtx; // 已移除,推理应是无状态的
std::string model_path;
unsigned char *model_data;
@ -45,24 +34,18 @@ private:
float nms_threshold, box_conf_threshold;
// 入侵检测和跟踪相关成员
cv::Rect intrusion_zone; // 入侵区域
std::map<int, TrackedPerson> tracked_persons; // 存储所有被跟踪的人
int next_track_id; // 用于分配新的唯一ID
double intrusion_time_threshold; // 入侵时间阈值 (秒)
// 跟踪逻辑的私有方法
void update_tracker(detect_result_group_t &detect_result_group);
// 所有的跟踪和入侵检测成员变量已被移除
public:
rkYolov5s(const std::string &model_path);
int init(rknn_context *ctx_in, bool isChild);
rknn_context *get_pctx();
cv::Mat infer(cv::Mat &ori_img);
detect_result_group_t infer(const cv::Mat &ori_img);
~rkYolov5s();
// 用于从外部设置入侵区域的公共方法
void set_intrusion_zone(const cv::Rect& zone);
};
#endif // RKYOLOV5S_H

View File

@ -1,109 +0,0 @@
#ifndef RKNNPOOL_H
#define RKNNPOOL_H
#include "rknn/ThreadPool.hpp"
#include <vector>
#include <iostream>
#include <mutex>
#include <queue>
#include <memory>
// rknnModel模型类, inputType模型输入类型, outputType模型输出类型
template <typename rknnModel, typename inputType, typename outputType>
class rknnPool
{
private:
int threadNum;
std::string modelPath;
long long id;
std::mutex idMtx, queueMtx;
std::unique_ptr<dpool::ThreadPool> pool;
std::queue<std::future<outputType>> futs;
std::vector<std::shared_ptr<rknnModel>> models;
protected:
int getModelId();
public:
rknnPool(const std::string modelPath, int threadNum);
int init();
// 模型推理/Model inference
int put(inputType inputData);
// 获取推理结果/Get the results of your inference
int get(outputType &outputData);
~rknnPool();
};
template <typename rknnModel, typename inputType, typename outputType>
rknnPool<rknnModel, inputType, outputType>::rknnPool(const std::string modelPath, int threadNum)
{
this->modelPath = modelPath;
this->threadNum = threadNum;
this->id = 0;
}
template <typename rknnModel, typename inputType, typename outputType>
int rknnPool<rknnModel, inputType, outputType>::init()
{
try
{
this->pool = std::make_unique<dpool::ThreadPool>(this->threadNum);
for (int i = 0; i < this->threadNum; i++)
models.push_back(std::make_shared<rknnModel>(this->modelPath.c_str()));
}
catch (const std::bad_alloc &e)
{
std::cout << "Out of memory: " << e.what() << std::endl;
return -1;
}
// 初始化模型/Initialize the model
for (int i = 0, ret = 0; i < threadNum; i++)
{
ret = models[i]->init(models[0]->get_pctx(), i != 0);
if (ret != 0)
return ret;
}
return 0;
}
template <typename rknnModel, typename inputType, typename outputType>
int rknnPool<rknnModel, inputType, outputType>::getModelId()
{
std::lock_guard<std::mutex> lock(idMtx);
int modelId = id % threadNum;
id++;
return modelId;
}
template <typename rknnModel, typename inputType, typename outputType>
int rknnPool<rknnModel, inputType, outputType>::put(inputType inputData)
{
std::lock_guard<std::mutex> lock(queueMtx);
futs.push(pool->submit(&rknnModel::infer, models[this->getModelId()], inputData));
return 0;
}
template <typename rknnModel, typename inputType, typename outputType>
int rknnPool<rknnModel, inputType, outputType>::get(outputType &outputData)
{
std::lock_guard<std::mutex> lock(queueMtx);
if(futs.empty() == true)
return 1;
outputData = futs.front().get();
futs.pop();
return 0;
}
template <typename rknnModel, typename inputType, typename outputType>
rknnPool<rknnModel, inputType, outputType>::~rknnPool()
{
while (!futs.empty())
{
outputType temp = futs.front().get();
futs.pop();
}
}
#endif

295
src/rknn/video_service.cc Normal file
View File

@ -0,0 +1,295 @@
// video_service.cpp
#include "video_service.h"
#include <stdio.h>
#include "opencv2/imgproc/imgproc.hpp"
#include "rknn/rkYolov5s.hpp"
#include "rknn/rknnPool.hpp"
#include "spdlog/spdlog.h"
#include <chrono> // (新增) 用于计时
#include <algorithm> // (新增)
// (新增) 报警接口函数 (从 rkYolov5s.cc 移入)
void VideoService::trigger_alarm(int person_id, const cv::Rect& box) {
printf("[ALARM] Intrusion detected! Person ID: %d at location (%d, %d, %d, %d)\n",
person_id, box.x, box.y, box.width, box.height);
// TODO: 在这里实现真正的报警逻辑,例如发送网络消息、写入数据库等。
}
// (新增) 获取当前时间的函数 (从 rkYolov5s.cc 移入)
double VideoService::get_current_time_seconds() {
return std::chrono::duration_cast<std::chrono::duration<double>>(
std::chrono::high_resolution_clock::now().time_since_epoch()
).count();
}
VideoService::VideoService(std::string model_path,
int thread_num,
std::string input_url,
std::string output_rtsp_url)
: model_path_(model_path),
thread_num_(thread_num),
input_url_(input_url),
output_rtsp_url_(output_rtsp_url),
running_(false)
{
// (新增) 初始化跟踪器状态
next_track_id_ = 1;
intrusion_time_threshold_ = 3.0; // 3秒
intrusion_zone_ = cv::Rect(0, 0, 0, 0); // 默认无效
printf("VideoService created. Input: %s, Output: %s\n", input_url_.c_str(), output_rtsp_url_.c_str());
}
VideoService::~VideoService() {
if (running_) {
stop();
}
}
bool VideoService::start() {
// (关键修改) rknnPool 的模板参数已更新
rknn_pool_ = std::make_unique<rknnPool<rkYolov5s, cv::Mat, detect_result_group_t>>(model_path_.c_str(), thread_num_);
if (rknn_pool_->init() != 0) {
printf("rknnPool init fail!\n");
return false;
}
printf("rknnPool init success.\n");
// 2. 设置RTSP传输协议
setenv("OPENCV_FFMPEG_CAPTURE_OPTIONS", "rtsp_transport;tcp", 1);
printf("Set RTSP transport protocol to TCP\n");
// 3. 初始化 VideoCapture
capture_.open(input_url_, cv::CAP_FFMPEG);
if (!capture_.isOpened()) {
printf("Error: Could not open RTSP stream: %s\n", input_url_.c_str());
return false;
}
// 4. 获取输入视频的属性
frame_width_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_WIDTH));
frame_height_ = static_cast<int>(capture_.get(cv::CAP_PROP_FRAME_HEIGHT));
frame_fps_ = capture_.get(cv::CAP_PROP_FPS);
if (frame_fps_ <= 0) frame_fps_ = 25.0;
printf("RTSP stream opened successfully! (%dx%d @ %.2f FPS)\n", frame_width_, frame_height_, frame_fps_);
std::string gst_pipeline =
"appsrc ! "
"video/x-raw,format=BGR ! "
"videoconvert ! "
"video/x-raw,format=NV12 ! "
"mpph265enc gop=25 rc-mode=fixqp qp-init=26 ! " // (备注) 你可以根据需要调整 mpph265enc 参数
"h265parse ! "
"rtspclientsink location=" + output_rtsp_url_ + " latency=0 protocols=tcp";
printf("Using GStreamer output pipeline: %s\n", gst_pipeline.c_str());
writer_.open(gst_pipeline,
cv::CAP_GSTREAMER,
0,
frame_fps_,
cv::Size(frame_width_, frame_height_),
true);
if (!writer_.isOpened()) {
printf("Error: Could not open VideoWriter with GStreamer pipeline.\n");
capture_.release();
return false;
}
printf("VideoWriter opened successfully.\n");
// 6. 启动处理线程
running_ = true;
processing_thread_ = std::thread(&VideoService::processing_loop, this);
printf("Processing thread started.\n");
return true;
}
void VideoService::stop() {
printf("Stopping VideoService...\n");
running_ = false;
if (processing_thread_.joinable()) {
processing_thread_.join();
}
printf("Processing thread joined.\n");
if (capture_.isOpened()) {
capture_.release();
}
if (writer_.isOpened()) {
writer_.release();
}
printf("VideoService stopped.\n");
}
// (新增) 从 rkYolov5s.cc 移入并修改
// 这是现在唯一的跟踪器逻辑,在主线程中串行调用
void VideoService::update_tracker(detect_result_group_t &detect_result_group, const cv::Size& frame_size)
{
// 首次运行时,根据图像尺寸初始化入侵区域 (设定在画面中央)
if (intrusion_zone_.width == 0 || intrusion_zone_.height == 0) {
intrusion_zone_ = cv::Rect(frame_size.width / 4, frame_size.height / 4, frame_size.width / 2, frame_size.height / 2);
}
std::vector<cv::Rect> current_detections;
for (int i = 0; i < detect_result_group.count; i++) {
detect_result_t *det_result = &(detect_result_group.results[i]);
if (strcmp(det_result->name, "person") == 0) {
current_detections.push_back(cv::Rect(
det_result->box.left, det_result->box.top,
det_result->box.right - det_result->box.left,
det_result->box.bottom - det_result->box.top));
}
}
// 1. 对于已有的跟踪目标,增加其未见帧数
for (auto it = tracked_persons_.begin(); it != tracked_persons_.end(); ++it) {
it->second.frames_unseen++;
}
// 2. 将当前帧的检测结果与已有的跟踪目标进行匹配
for (const auto& det_box : current_detections) {
bool is_matched = false;
int best_match_id = -1;
double max_iou = 0.3; // IoU阈值
for (auto const& [id, person] : this->tracked_persons_) {
double iou = (double)(det_box & person.box).area() / (double)(det_box | person.box).area();
if (iou > max_iou) {
max_iou = iou;
best_match_id = id;
}
}
if (best_match_id != -1) {
// 匹配成功
tracked_persons_[best_match_id].box = det_box;
tracked_persons_[best_match_id].frames_unseen = 0;
is_matched = true;
} else {
// 匹配失败,创建新的跟踪目标
TrackedPerson new_person;
new_person.id = this->next_track_id_++; // 使用成员变量
new_person.box = det_box;
new_person.entry_time = 0;
new_person.is_in_zone = false;
new_person.alarm_triggered = false;
new_person.frames_unseen = 0;
tracked_persons_[new_person.id] = new_person; // 使用成员变量
}
}
// 3. 处理和更新每个目标的状态
double current_time = get_current_time_seconds();
for (auto it = tracked_persons_.begin(); it != tracked_persons_.end(); ++it) {
TrackedPerson& person = it->second;
// 使用成员变量
bool currently_in_zone = (this->intrusion_zone_ & person.box).area() > 0;
if (currently_in_zone) {
if (!person.is_in_zone) {
person.is_in_zone = true;
person.entry_time = current_time;
} else {
// 使用成员变量
if (!person.alarm_triggered && (current_time - person.entry_time) > this->intrusion_time_threshold_) {
person.alarm_triggered = true;
trigger_alarm(person.id, person.box); // 调用成员函数
}
}
} else {
person.is_in_zone = false;
person.entry_time = 0;
person.alarm_triggered = false;
}
}
// 4. 移除消失太久的目标
for (auto it = tracked_persons_.begin(); it != tracked_persons_.end(); ) {
// (建议) 增加到50帧 (约2秒) 提高鲁棒性减少ID切换
if (it->second.frames_unseen > 50) {
it = tracked_persons_.erase(it);
} else {
++it;
}
}
}
// (新增) 绘图辅助函数,从 rkYolov5s::infer 移入
void VideoService::draw_results(cv::Mat& frame)
{
// 绘制入侵区域
cv::rectangle(frame, this->intrusion_zone_, cv::Scalar(255, 255, 0), 2); // 黄色
// 绘制框体和报警状态
for (auto const& [id, person] : this->tracked_persons_) {
// 根据是否触发报警决定颜色 (BGR: 红色 vs 绿色)
cv::Scalar box_color = person.alarm_triggered ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0);
int line_thickness = person.alarm_triggered ? 3 : 2;
cv::rectangle(frame, person.box, box_color, line_thickness);
std::string label = "Person " + std::to_string(id);
if (person.is_in_zone) {
label += " (In Zone)";
}
cv::putText(frame, label, cv::Point(person.box.x, person.box.y - 10),
cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
}
}
// (关键修改) 彻底重写处理循环为 "一进一出" 模式
void VideoService::processing_loop() {
cv::Mat frame;
detect_result_group_t detection_results; // (修改) 存储推理结果
while (running_) {
if (!capture_.read(frame)) {
spdlog::warn("VideoService: Failed to read frame from capture. Stopping capture.");
running_ = false; // 停止循环
break;
}
if (frame.empty()) {
continue;
}
// 1. (并行) 将原始帧放入池中进行推理
if (rknn_pool_->put(frame) != 0) {
spdlog::error("VideoService: Failed to put frame into rknnPool. Stopping.");
running_ = false;
break;
}
// 2. (串行) 立刻取回该帧的推理结果
// 这保证了 跟踪 和 绘图 总是按顺序在主线程中执行
if (rknn_pool_->get(detection_results) != 0) {
spdlog::error("VideoService: Failed to get frame from rknnPool. Stopping.");
running_ = false;
break;
}
// 3. (串行) 在主循环中更新唯一的跟踪器
this->update_tracker(detection_results, frame.size());
// 4. (串行) 在主循环中将跟踪结果绘制到帧上
this->draw_results(frame);
// 5. (串行) 将处理和绘制完毕的帧推流
if (writer_.isOpened()) {
writer_.write(frame);
}
}
// (修改) 移除排空循环 (Draining loop)
// 新的 "一进一出" 逻辑不需要排空,退出即停止
spdlog::info("VideoService: Processing loop finished.");
}

76
src/rknn/video_service.h Normal file
View File

@ -0,0 +1,76 @@
// video_service.h
#pragma once
#include <string>
#include <thread>
#include <atomic>
#include <memory>
#include <map> // (新增) 用于跟踪
#include <opencv2/core/core.hpp>
#include <opencv2/videoio.hpp>
#include "postprocess.h" // (新增) 需要 detect_result_group_t
// 向前声明
template<typename T, typename IN, typename OUT>
class rknnPool;
class rkYolov5s;
// (新增) 从 rkYolov5s.hpp 移动过来的结构体
struct TrackedPerson
{
int id; // 唯一ID
cv::Rect box; // 当前位置
double entry_time; // 进入入侵区域的时间戳 (秒)
bool is_in_zone; // 是否在区域内
bool alarm_triggered; // 是否已触发报警
int frames_unseen; // 消失的帧数
};
class VideoService {
public:
VideoService(std::string model_path,
int thread_num,
std::string input_url,
std::string output_rtsp_url);
~VideoService();
bool start();
void stop();
private:
void processing_loop();
// (新增) 跟踪和绘图相关的私有方法
void update_tracker(detect_result_group_t &detect_result_group, const cv::Size& frame_size);
void draw_results(cv::Mat& frame); // 绘图辅助函数
void trigger_alarm(int person_id, const cv::Rect& box);
double get_current_time_seconds();
// 配置
std::string model_path_;
int thread_num_;
std::string input_url_;
std::string output_rtsp_url_;
// 视频属性
int frame_width_ = 0;
int frame_height_ = 0;
double frame_fps_ = 0.0;
// 资源
// (关键修改) rknnPool 的输出类型变为 detect_result_group_t
std::unique_ptr<rknnPool<rkYolov5s, cv::Mat, detect_result_group_t>> rknn_pool_;
cv::VideoCapture capture_;
cv::VideoWriter writer_;
// 线程管理
std::thread processing_thread_;
std::atomic<bool> running_{false};
// (新增) 跟踪器状态变量 (从 rkYolov5s 移入)
cv::Rect intrusion_zone_;
std::map<int, TrackedPerson> tracked_persons_;
int next_track_id_;
double intrusion_time_threshold_;
};

View File

@ -34,7 +34,7 @@ void WebServer::start() {
}
m_thread = std::thread([this]() {
spdlog::info("Starting Web server on port {}", m_port);
this->port(m_port).run();
this->bindaddr("0.0.0.0").port(m_port).run();
spdlog::info("Web server has stopped.");
});
}