#include // #include // 已移除 // #include // 已移除 #include #include // #include // 已移除 #include "postprocess.h" #include "preprocess.h" #include "rkYolov5s.hpp" #include "rknn/coreNum.hpp" #include "opencv2/core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "rknn/rknn_api.h" // trigger_alarm 和 get_current_time_seconds 已被移至 video_service.cc static void dump_tensor_attr(rknn_tensor_attr *attr) { std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]); for (int i = 1; i < attr->n_dims; ++i) { shape_str += ", " + std::to_string(attr->dims[i]); } } static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz) { unsigned char *data; int ret; data = NULL; if (NULL == fp) { return NULL; } ret = fseek(fp, ofst, SEEK_SET); if (ret != 0) { printf("blob seek failure.\n"); return NULL; } data = (unsigned char *)malloc(sz); if (data == NULL) { printf("buffer malloc failure.\n"); return NULL; } ret = fread(data, 1, sz, fp); return data; } static unsigned char *load_model(const char *filename, int *model_size) { FILE *fp; unsigned char *data; fp = fopen(filename, "rb"); if (NULL == fp) { printf("Open file %s failed.\n", filename); return NULL; } fseek(fp, 0, SEEK_END); int size = ftell(fp); data = load_data(fp, 0, size); fclose(fp); *model_size = size; return data; } static int saveFloat(const char *file_name, float *output, int element_size) { FILE *fp; fp = fopen(file_name, "w"); for (int i = 0; i < element_size; i++) { fprintf(fp, "%.6f\n", output[i]); } fclose(fp); return 0; } rkYolov5s::rkYolov5s(const std::string &model_path, const std::string &label_path, int class_num) { this->model_path = model_path; this->m_label_path = label_path; // [新增] this->m_class_num = class_num; // [新增] nms_threshold = NMS_THRESH; box_conf_threshold = BOX_THRESH; } // set_intrusion_zone 已被移除 int rkYolov5s::init(rknn_context *ctx_in, bool share_weight) { printf("Loading model...\n"); int model_data_size = 0; model_data = load_model(model_path.c_str(), &model_data_size); if (share_weight == true) ret = rknn_dup_context(ctx_in, &ctx); else ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); return -1; } rknn_core_mask core_mask; switch (get_core_num()) { case 0: core_mask = RKNN_NPU_CORE_0; break; case 1: core_mask = RKNN_NPU_CORE_1; break; case 2: core_mask = RKNN_NPU_CORE_2; break; } ret = rknn_set_core_mask(ctx, core_mask); if (ret < 0) { printf("rknn_init core error ret=%d\n", ret); return -1; } rknn_sdk_version version; ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version)); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); return -1; } printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version); ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); return -1; } printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); input_attrs = (rknn_tensor_attr *)calloc(io_num.n_input, sizeof(rknn_tensor_attr)); for (int i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); return -1; } dump_tensor_attr(&(input_attrs[i])); } output_attrs = (rknn_tensor_attr *)calloc(io_num.n_output, sizeof(rknn_tensor_attr)); for (int i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); dump_tensor_attr(&(output_attrs[i])); } if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) { printf("model is NCHW input fmt\n"); channel = input_attrs[0].dims[1]; height = input_attrs[0].dims[2]; width = input_attrs[0].dims[3]; } else { printf("model is NHWC input fmt\n"); height = input_attrs[0].dims[1]; width = input_attrs[0].dims[2]; channel = input_attrs[0].dims[3]; } printf("model input height=%d, width=%d, channel=%d\n", height, width, channel); memset(inputs, 0, sizeof(inputs)); inputs[0].index = 0; inputs[0].type = RKNN_TENSOR_UINT8; inputs[0].size = width * height * channel; inputs[0].fmt = RKNN_TENSOR_NHWC; inputs[0].pass_through = 0; static std::mutex postprocess_init_mutex; static bool postprocess_initialized = false; std::lock_guard lock(postprocess_init_mutex); if (!postprocess_initialized) { // 调用我们新定义的 initPostProcess if (initPostProcess(m_label_path.c_str(), m_class_num) == 0) { postprocess_initialized = true; printf("PostProcess initialized successfully with %d classes from %s\n", m_class_num, m_label_path.c_str()); } else { printf("Failed to initialize PostProcess!\n"); return -1; // 初始化失败 } } return 0; // rknn 初始化成功 } rknn_context *rkYolov5s::get_pctx() { return &ctx; } detect_result_group_t rkYolov5s::infer(const cv::Mat &orig_img) { // std::lock_guard lock(mtx); // 已移除 cv::Mat img; cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB); img_width = img.cols; img_height = img.rows; BOX_RECT pads; memset(&pads, 0, sizeof(BOX_RECT)); cv::Size target_size(width, height); cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3); float scale_w = (float)target_size.width / img.cols; float scale_h = (float)target_size.height / img.rows; if (img_width != width || img_height != height) { rga_buffer_t src; rga_buffer_t dst; memset(&src, 0, sizeof(src)); memset(&dst, 0, sizeof(dst)); ret = resize_rga(src, dst, img, resized_img, target_size); if (ret != 0) { fprintf(stderr, "resize with rga error\n"); } inputs[0].buf = resized_img.data; } else { inputs[0].buf = img.data; } rknn_inputs_set(ctx, io_num.n_input, inputs); rknn_output outputs[io_num.n_output]; memset(outputs, 0, sizeof(outputs)); for (int i = 0; i < io_num.n_output; i++) { outputs[i].want_float = 0; } ret = rknn_run(ctx, NULL); ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); detect_result_group_t detect_result_group; std::vector out_scales; std::vector out_zps; for (int i = 0; i < io_num.n_output; ++i) { out_scales.push_back(output_attrs[i].scale); out_zps.push_back(output_attrs[i].zp); } post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width, box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, m_class_num, &detect_result_group); ret = rknn_outputs_release(ctx, io_num.n_output, outputs); // 返回原始检测结果 return detect_result_group; } rkYolov5s::~rkYolov5s() { // deinitPostProcess(); ret = rknn_destroy(ctx); if (model_data) free(model_data); if (input_attrs) free(input_attrs); if (output_attrs) free(output_attrs); }