bonus-edge-proxy/src/rknn/rkYolov5s.cc

269 lines
7.0 KiB
C++

#include <stdio.h>
#include <string>
#include <vector>
#include "postprocess.h"
#include "preprocess.h"
#include "rkYolov5s.hpp"
#include "rknn/coreNum.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "rknn/rknn_api.h"
static void dump_tensor_attr(rknn_tensor_attr *attr) {
std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]);
for (int i = 1; i < attr->n_dims; ++i) {
shape_str += ", " + std::to_string(attr->dims[i]);
}
}
static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz) {
unsigned char *data;
int ret;
data = NULL;
if (NULL == fp) {
return NULL;
}
ret = fseek(fp, ofst, SEEK_SET);
if (ret != 0) {
printf("blob seek failure.\n");
return NULL;
}
data = (unsigned char *)malloc(sz);
if (data == NULL) {
printf("buffer malloc failure.\n");
return NULL;
}
ret = fread(data, 1, sz, fp);
return data;
}
static unsigned char *load_model(const char *filename, int *model_size) {
FILE *fp;
unsigned char *data;
fp = fopen(filename, "rb");
if (NULL == fp) {
printf("Open file %s failed.\n", filename);
return NULL;
}
fseek(fp, 0, SEEK_END);
int size = ftell(fp);
data = load_data(fp, 0, size);
fclose(fp);
*model_size = size;
return data;
}
static int saveFloat(const char *file_name, float *output, int element_size) {
FILE *fp;
fp = fopen(file_name, "w");
for (int i = 0; i < element_size; i++) {
fprintf(fp, "%.6f\n", output[i]);
}
fclose(fp);
return 0;
}
rkYolov5s::rkYolov5s(const std::string &model_path,
const std::string &label_path, int class_num) {
this->model_path = model_path;
this->m_label_path = label_path;
this->m_class_num = class_num;
nms_threshold = NMS_THRESH;
box_conf_threshold = BOX_THRESH;
}
int rkYolov5s::init(rknn_context *ctx_in, bool share_weight) {
printf("Loading model...\n");
int model_data_size = 0;
model_data = load_model(model_path.c_str(), &model_data_size);
if (share_weight == true)
ret = rknn_dup_context(ctx_in, &ctx);
else
ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
rknn_core_mask core_mask;
switch (get_core_num()) {
case 0:
core_mask = RKNN_NPU_CORE_0;
break;
case 1:
core_mask = RKNN_NPU_CORE_1;
break;
case 2:
core_mask = RKNN_NPU_CORE_2;
break;
}
ret = rknn_set_core_mask(ctx, core_mask);
if (ret < 0) {
printf("rknn_init core error ret=%d\n", ret);
return -1;
}
rknn_sdk_version version;
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version,
sizeof(rknn_sdk_version));
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
printf("sdk version: %s driver version: %s\n", version.api_version,
version.drv_version);
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input,
io_num.n_output);
input_attrs =
(rknn_tensor_attr *)calloc(io_num.n_input, sizeof(rknn_tensor_attr));
for (int i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]),
sizeof(rknn_tensor_attr));
if (ret < 0) {
printf("rknn_init error ret=%d\n", ret);
return -1;
}
dump_tensor_attr(&(input_attrs[i]));
}
output_attrs =
(rknn_tensor_attr *)calloc(io_num.n_output, sizeof(rknn_tensor_attr));
for (int i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]),
sizeof(rknn_tensor_attr));
dump_tensor_attr(&(output_attrs[i]));
}
if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
printf("model is NCHW input fmt\n");
channel = input_attrs[0].dims[1];
height = input_attrs[0].dims[2];
width = input_attrs[0].dims[3];
} else {
printf("model is NHWC input fmt\n");
height = input_attrs[0].dims[1];
width = input_attrs[0].dims[2];
channel = input_attrs[0].dims[3];
}
printf("model input height=%d, width=%d, channel=%d\n", height, width,
channel);
memset(inputs, 0, sizeof(inputs));
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_UINT8;
inputs[0].size = width * height * channel;
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].pass_through = 0;
static std::mutex postprocess_init_mutex;
static bool postprocess_initialized = false;
std::lock_guard<std::mutex> lock(postprocess_init_mutex);
if (!postprocess_initialized) {
if (initPostProcess(m_label_path.c_str(), m_class_num) == 0) {
postprocess_initialized = true;
printf("PostProcess initialized successfully with %d classes from %s\n",
m_class_num, m_label_path.c_str());
} else {
printf("Failed to initialize PostProcess!\n");
return -1;
}
}
return 0;
}
rknn_context *rkYolov5s::get_pctx() { return &ctx; }
detect_result_group_t rkYolov5s::infer(const cv::Mat &orig_img) {
cv::Mat img;
cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB);
img_width = img.cols;
img_height = img.rows;
BOX_RECT pads;
memset(&pads, 0, sizeof(BOX_RECT));
cv::Size target_size(width, height);
cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3);
float scale_w = (float)target_size.width / img.cols;
float scale_h = (float)target_size.height / img.rows;
if (img_width != width || img_height != height) {
rga_buffer_t src;
rga_buffer_t dst;
memset(&src, 0, sizeof(src));
memset(&dst, 0, sizeof(dst));
ret = resize_rga(src, dst, img, resized_img, target_size);
if (ret != 0) {
fprintf(stderr, "resize with rga error\n");
}
inputs[0].buf = resized_img.data;
} else {
inputs[0].buf = img.data;
}
rknn_inputs_set(ctx, io_num.n_input, inputs);
rknn_output outputs[io_num.n_output];
memset(outputs, 0, sizeof(outputs));
for (int i = 0; i < io_num.n_output; i++) {
outputs[i].want_float = 0;
}
ret = rknn_run(ctx, NULL);
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
detect_result_group_t detect_result_group;
std::vector<float> out_scales;
std::vector<int32_t> out_zps;
for (int i = 0; i < io_num.n_output; ++i) {
out_scales.push_back(output_attrs[i].scale);
out_zps.push_back(output_attrs[i].zp);
}
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf,
(int8_t *)outputs[2].buf, height, width, box_conf_threshold,
nms_threshold, pads, scale_w, scale_h, out_zps, out_scales,
m_class_num, &detect_result_group);
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
return detect_result_group;
}
rkYolov5s::~rkYolov5s() {
ret = rknn_destroy(ctx);
if (model_data)
free(model_data);
if (input_attrs)
free(input_attrs);
if (output_attrs)
free(output_attrs);
}