199 lines
8.7 KiB
Python
199 lines
8.7 KiB
Python
import numpy as np
|
|
from sklearn.utils.linear_assignment_ import linear_assignment
|
|
# from numba import jit
|
|
import copy
|
|
|
|
|
|
class Tracker(object):
|
|
def __init__(self, opt):
|
|
self.opt = opt
|
|
self.reset()
|
|
|
|
def init_track(self, results):
|
|
for item in results:
|
|
if item['score'] > self.opt.new_thresh:
|
|
self.id_count += 1
|
|
# active and age are never used in the paper
|
|
item['active'] = 1
|
|
item['age'] = 1
|
|
item['tracking_id'] = self.id_count
|
|
if not ('ct' in item):
|
|
bbox = item['bbox']
|
|
item['ct'] = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
|
|
self.tracks.append(item)
|
|
|
|
def reset(self):
|
|
self.id_count = 0
|
|
self.tracks = []
|
|
|
|
def step(self, results_with_low, public_det=None):
|
|
|
|
results = [item for item in results_with_low if item['score'] >= self.opt.track_thresh]
|
|
|
|
# first association
|
|
N = len(results)
|
|
M = len(self.tracks)
|
|
|
|
dets = np.array(
|
|
[det['ct'] + det['tracking'] for det in results], np.float32) # N x 2
|
|
track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \
|
|
(track['bbox'][3] - track['bbox'][1])) \
|
|
for track in self.tracks], np.float32) # M
|
|
track_cat = np.array([track['class'] for track in self.tracks], np.int32) # M
|
|
item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \
|
|
(item['bbox'][3] - item['bbox'][1])) \
|
|
for item in results], np.float32) # N
|
|
item_cat = np.array([item['class'] for item in results], np.int32) # N
|
|
tracks = np.array(
|
|
[pre_det['ct'] for pre_det in self.tracks], np.float32) # M x 2
|
|
dist = (((tracks.reshape(1, -1, 2) - \
|
|
dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M
|
|
|
|
invalid = ((dist > track_size.reshape(1, M)) + \
|
|
(dist > item_size.reshape(N, 1)) + \
|
|
(item_cat.reshape(N, 1) != track_cat.reshape(1, M))) > 0
|
|
dist = dist + invalid * 1e18
|
|
|
|
if self.opt.hungarian:
|
|
assert not self.opt.hungarian, 'we only verify centertrack with greedy_assignment'
|
|
item_score = np.array([item['score'] for item in results], np.float32) # N
|
|
dist[dist > 1e18] = 1e18
|
|
matched_indices = linear_assignment(dist)
|
|
else:
|
|
matched_indices = greedy_assignment(copy.deepcopy(dist))
|
|
|
|
unmatched_dets = [d for d in range(dets.shape[0]) \
|
|
if not (d in matched_indices[:, 0])]
|
|
unmatched_tracks = [d for d in range(tracks.shape[0]) \
|
|
if not (d in matched_indices[:, 1])]
|
|
|
|
if self.opt.hungarian:
|
|
assert not self.opt.hungarian, 'we only verify centertrack with greedy_assignment'
|
|
matches = []
|
|
for m in matched_indices:
|
|
if dist[m[0], m[1]] > 1e16:
|
|
unmatched_dets.append(m[0])
|
|
unmatched_tracks.append(m[1])
|
|
else:
|
|
matches.append(m)
|
|
matches = np.array(matches).reshape(-1, 2)
|
|
else:
|
|
matches = matched_indices
|
|
|
|
ret = []
|
|
for m in matches:
|
|
track = results[m[0]]
|
|
track['tracking_id'] = self.tracks[m[1]]['tracking_id']
|
|
track['age'] = 1
|
|
track['active'] = self.tracks[m[1]]['active'] + 1
|
|
ret.append(track)
|
|
|
|
if self.opt.public_det and len(unmatched_dets) > 0:
|
|
assert not self.opt.public_det, 'we only verify centertrack with private detection'
|
|
# Public detection: only create tracks from provided detections
|
|
pub_dets = np.array([d['ct'] for d in public_det], np.float32)
|
|
dist3 = ((dets.reshape(-1, 1, 2) - pub_dets.reshape(1, -1, 2)) ** 2).sum(
|
|
axis=2)
|
|
matched_dets = [d for d in range(dets.shape[0]) \
|
|
if not (d in unmatched_dets)]
|
|
dist3[matched_dets] = 1e18
|
|
for j in range(len(pub_dets)):
|
|
i = dist3[:, j].argmin()
|
|
if dist3[i, j] < item_size[i]:
|
|
dist3[i, :] = 1e18
|
|
track = results[i]
|
|
if track['score'] > self.opt.new_thresh:
|
|
self.id_count += 1
|
|
track['tracking_id'] = self.id_count
|
|
track['age'] = 1
|
|
track['active'] = 1
|
|
ret.append(track)
|
|
else:
|
|
# Private detection: create tracks for all un-matched detections
|
|
for i in unmatched_dets:
|
|
track = results[i]
|
|
if track['score'] > self.opt.new_thresh:
|
|
self.id_count += 1
|
|
track['tracking_id'] = self.id_count
|
|
track['age'] = 1
|
|
track['active'] = 1
|
|
ret.append(track)
|
|
|
|
# second association
|
|
results_second = [item for item in results_with_low if item['score'] < self.opt.track_thresh]
|
|
|
|
self_tracks_second = [self.tracks[i] for i in unmatched_tracks if self.tracks[i]['active'] > 0]
|
|
second2original = [i for i in unmatched_tracks if self.tracks[i]['active'] > 0]
|
|
|
|
N = len(results_second)
|
|
M = len(self_tracks_second)
|
|
|
|
if N > 0 and M > 0:
|
|
dets = np.array(
|
|
[det['ct'] + det['tracking'] for det in results_second], np.float32) # N x 2
|
|
track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \
|
|
(track['bbox'][3] - track['bbox'][1])) \
|
|
for track in self_tracks_second], np.float32) # M
|
|
track_cat = np.array([track['class'] for track in self_tracks_second], np.int32) # M
|
|
item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \
|
|
(item['bbox'][3] - item['bbox'][1])) \
|
|
for item in results_second], np.float32) # N
|
|
item_cat = np.array([item['class'] for item in results_second], np.int32) # N
|
|
tracks_second = np.array(
|
|
[pre_det['ct'] for pre_det in self_tracks_second], np.float32) # M x 2
|
|
dist = (((tracks_second.reshape(1, -1, 2) - \
|
|
dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M
|
|
|
|
invalid = ((dist > track_size.reshape(1, M)) + \
|
|
(dist > item_size.reshape(N, 1)) + \
|
|
(item_cat.reshape(N, 1) != track_cat.reshape(1, M))) > 0
|
|
dist = dist + invalid * 1e18
|
|
|
|
matched_indices_second = greedy_assignment(copy.deepcopy(dist), 1e8)
|
|
|
|
unmatched_tracks_second = [d for d in range(tracks_second.shape[0]) \
|
|
if not (d in matched_indices_second[:, 1])]
|
|
matches_second = matched_indices_second
|
|
|
|
for m in matches_second:
|
|
track = results_second[m[0]]
|
|
track['tracking_id'] = self_tracks_second[m[1]]['tracking_id']
|
|
track['age'] = 1
|
|
track['active'] = self_tracks_second[m[1]]['active'] + 1
|
|
ret.append(track)
|
|
|
|
unmatched_tracks = [second2original[i] for i in unmatched_tracks_second] + \
|
|
[i for i in unmatched_tracks if self.tracks[i]['active'] == 0]
|
|
|
|
#. for debug
|
|
# unmatched_tracks = [i for i in unmatched_tracks if self.tracks[i]['active'] > 0] + \
|
|
# [i for i in unmatched_tracks if self.tracks[i]['active'] == 0]
|
|
|
|
for i in unmatched_tracks:
|
|
track = self.tracks[i]
|
|
if track['age'] < self.opt.max_age:
|
|
track['age'] += 1
|
|
track['active'] = 0
|
|
bbox = track['bbox']
|
|
ct = track['ct']
|
|
v = [0, 0]
|
|
track['bbox'] = [
|
|
bbox[0] + v[0], bbox[1] + v[1],
|
|
bbox[2] + v[0], bbox[3] + v[1]]
|
|
track['ct'] = [ct[0] + v[0], ct[1] + v[1]]
|
|
ret.append(track)
|
|
self.tracks = ret
|
|
return ret
|
|
|
|
|
|
def greedy_assignment(dist, thresh=1e16):
|
|
matched_indices = []
|
|
if dist.shape[1] == 0:
|
|
return np.array(matched_indices, np.int32).reshape(-1, 2)
|
|
for i in range(dist.shape[0]):
|
|
j = dist[i].argmin()
|
|
if dist[i][j] < thresh:
|
|
dist[:, j] = 1e18
|
|
matched_indices.append([i, j])
|
|
return np.array(matched_indices, np.int32).reshape(-1, 2)
|