251 lines
8.5 KiB
Python
251 lines
8.5 KiB
Python
"""
|
|
SORT: A Simple, Online and Realtime Tracker
|
|
Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
"""
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import numpy as np
|
|
|
|
from filterpy.kalman import KalmanFilter
|
|
|
|
np.random.seed(0)
|
|
|
|
|
|
def linear_assignment(cost_matrix):
|
|
try:
|
|
import lap
|
|
_, x, y = lap.lapjv(cost_matrix, extend_cost=True)
|
|
return np.array([[y[i],i] for i in x if i >= 0]) #
|
|
except ImportError:
|
|
from scipy.optimize import linear_sum_assignment
|
|
x, y = linear_sum_assignment(cost_matrix)
|
|
return np.array(list(zip(x, y)))
|
|
|
|
|
|
def iou_batch(bb_test, bb_gt):
|
|
"""
|
|
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
|
|
"""
|
|
bb_gt = np.expand_dims(bb_gt, 0)
|
|
bb_test = np.expand_dims(bb_test, 1)
|
|
|
|
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
|
|
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
|
|
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
|
|
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
|
|
w = np.maximum(0., xx2 - xx1)
|
|
h = np.maximum(0., yy2 - yy1)
|
|
wh = w * h
|
|
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
|
|
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
|
|
return(o)
|
|
|
|
|
|
def convert_bbox_to_z(bbox):
|
|
"""
|
|
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
|
|
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
|
|
the aspect ratio
|
|
"""
|
|
w = bbox[2] - bbox[0]
|
|
h = bbox[3] - bbox[1]
|
|
x = bbox[0] + w/2.
|
|
y = bbox[1] + h/2.
|
|
s = w * h #scale is just area
|
|
r = w / float(h)
|
|
return np.array([x, y, s, r]).reshape((4, 1))
|
|
|
|
|
|
def convert_x_to_bbox(x,score=None):
|
|
"""
|
|
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
|
|
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
|
|
"""
|
|
w = np.sqrt(x[2] * x[3])
|
|
h = x[2] / w
|
|
if(score==None):
|
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
|
|
else:
|
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
|
|
|
|
|
|
class KalmanBoxTracker(object):
|
|
"""
|
|
This class represents the internal state of individual tracked objects observed as bbox.
|
|
"""
|
|
count = 0
|
|
def __init__(self,bbox):
|
|
"""
|
|
Initialises a tracker using initial bounding box.
|
|
"""
|
|
#define constant velocity model
|
|
self.kf = KalmanFilter(dim_x=7, dim_z=4)
|
|
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
|
|
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
|
|
|
|
self.kf.R[2:,2:] *= 10.
|
|
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
|
|
self.kf.P *= 10.
|
|
self.kf.Q[-1,-1] *= 0.01
|
|
self.kf.Q[4:,4:] *= 0.01
|
|
|
|
self.kf.x[:4] = convert_bbox_to_z(bbox)
|
|
self.time_since_update = 0
|
|
self.id = KalmanBoxTracker.count
|
|
KalmanBoxTracker.count += 1
|
|
self.history = []
|
|
self.hits = 0
|
|
self.hit_streak = 0
|
|
self.age = 0
|
|
|
|
def update(self,bbox):
|
|
"""
|
|
Updates the state vector with observed bbox.
|
|
"""
|
|
self.time_since_update = 0
|
|
self.history = []
|
|
self.hits += 1
|
|
self.hit_streak += 1
|
|
self.kf.update(convert_bbox_to_z(bbox))
|
|
|
|
def predict(self):
|
|
"""
|
|
Advances the state vector and returns the predicted bounding box estimate.
|
|
"""
|
|
if((self.kf.x[6]+self.kf.x[2])<=0):
|
|
self.kf.x[6] *= 0.0
|
|
self.kf.predict()
|
|
self.age += 1
|
|
if(self.time_since_update>0):
|
|
self.hit_streak = 0
|
|
self.time_since_update += 1
|
|
self.history.append(convert_x_to_bbox(self.kf.x))
|
|
return self.history[-1]
|
|
|
|
def get_state(self):
|
|
"""
|
|
Returns the current bounding box estimate.
|
|
"""
|
|
return convert_x_to_bbox(self.kf.x)
|
|
|
|
|
|
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
|
"""
|
|
Assigns detections to tracked object (both represented as bounding boxes)
|
|
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
|
|
"""
|
|
if(len(trackers)==0):
|
|
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
|
|
|
|
iou_matrix = iou_batch(detections, trackers)
|
|
|
|
if min(iou_matrix.shape) > 0:
|
|
a = (iou_matrix > iou_threshold).astype(np.int32)
|
|
if a.sum(1).max() == 1 and a.sum(0).max() == 1:
|
|
matched_indices = np.stack(np.where(a), axis=1)
|
|
else:
|
|
matched_indices = linear_assignment(-iou_matrix)
|
|
else:
|
|
matched_indices = np.empty(shape=(0,2))
|
|
|
|
unmatched_detections = []
|
|
for d, det in enumerate(detections):
|
|
if(d not in matched_indices[:,0]):
|
|
unmatched_detections.append(d)
|
|
unmatched_trackers = []
|
|
for t, trk in enumerate(trackers):
|
|
if(t not in matched_indices[:,1]):
|
|
unmatched_trackers.append(t)
|
|
|
|
#filter out matched with low IOU
|
|
matches = []
|
|
for m in matched_indices:
|
|
if(iou_matrix[m[0], m[1]]<iou_threshold):
|
|
unmatched_detections.append(m[0])
|
|
unmatched_trackers.append(m[1])
|
|
else:
|
|
matches.append(m.reshape(1,2))
|
|
if(len(matches)==0):
|
|
matches = np.empty((0,2),dtype=int)
|
|
else:
|
|
matches = np.concatenate(matches,axis=0)
|
|
|
|
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
|
|
|
|
|
|
class Sort(object):
|
|
def __init__(self, det_thresh, max_age=30, min_hits=3, iou_threshold=0.3):
|
|
"""
|
|
Sets key parameters for SORT
|
|
"""
|
|
self.max_age = max_age
|
|
self.min_hits = min_hits
|
|
self.iou_threshold = iou_threshold
|
|
self.trackers = []
|
|
self.frame_count = 0
|
|
self.det_thresh = det_thresh
|
|
|
|
def update(self, output_results, img_info, img_size):
|
|
"""
|
|
Params:
|
|
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
|
|
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
|
|
Returns the a similar array, where the last column is the object ID.
|
|
NOTE: The number of objects returned may differ from the number of detections provided.
|
|
"""
|
|
self.frame_count += 1
|
|
# post_process detections
|
|
output_results = output_results.cpu().numpy()
|
|
scores = output_results[:, 4] * output_results[:, 5]
|
|
bboxes = output_results[:, :4] # x1y1x2y2
|
|
img_h, img_w = img_info[0], img_info[1]
|
|
scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w))
|
|
bboxes /= scale
|
|
dets = np.concatenate((bboxes, np.expand_dims(scores, axis=-1)), axis=1)
|
|
remain_inds = scores > self.det_thresh
|
|
dets = dets[remain_inds]
|
|
# get predicted locations from existing trackers.
|
|
trks = np.zeros((len(self.trackers), 5))
|
|
to_del = []
|
|
ret = []
|
|
for t, trk in enumerate(trks):
|
|
pos = self.trackers[t].predict()[0]
|
|
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
|
|
if np.any(np.isnan(pos)):
|
|
to_del.append(t)
|
|
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
|
|
for t in reversed(to_del):
|
|
self.trackers.pop(t)
|
|
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
|
|
|
|
# update matched trackers with assigned detections
|
|
for m in matched:
|
|
self.trackers[m[1]].update(dets[m[0], :])
|
|
|
|
# create and initialise new trackers for unmatched detections
|
|
for i in unmatched_dets:
|
|
trk = KalmanBoxTracker(dets[i,:])
|
|
self.trackers.append(trk)
|
|
i = len(self.trackers)
|
|
for trk in reversed(self.trackers):
|
|
d = trk.get_state()[0]
|
|
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
|
|
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
|
|
i -= 1
|
|
# remove dead tracklet
|
|
if(trk.time_since_update > self.max_age):
|
|
self.trackers.pop(i)
|
|
if(len(ret)>0):
|
|
return np.concatenate(ret)
|
|
return np.empty((0,5)) |