This repository has been archived on 2025-11-17. You can view files and clone it, but cannot push or open issues or pull requests.
bonus-yolo-sdk-sourcecode/Yolo11_ONNX/Yolo_ONNX.cpp

385 lines
14 KiB
C++
Raw Blame History

#include "pch.h"
#include "Yolo_ONNX.h"
//
#include <onnxruntime_c_api.h>
#include <onnxruntime_cxx_api.h>
#include <opencv2/opencv.hpp>
#include <vector>
#include <string>
#include <iostream>
#include <memory>
#include <stdexcept> //
namespace {
cv::Mat preprocess(const cv::Mat& img, int target_width, int target_height, int& pad_w, int& pad_h, float& scale);
std::vector<Detection> postprocess(Ort::Value& output_tensor, float scale, int pad_w, int pad_h, int img_w, int img_h, float conf_threshold, float iou_threshold);
class YoloDetector {
public:
//
Ort::Env env;
std::unique_ptr<Ort::Session> session;
//
int input_width = 0;
int input_height = 0;
//
Ort::AllocatorWithDefaultOptions allocator;
std::string input_name_str;
std::string output_name_str;
std::vector<const char*> input_node_names;
std::vector<const char*> output_node_names;
public:
/**
* @brief
*/
YoloDetector(const wchar_t* model_path, int in_width, int in_height)
: env(ORT_LOGGING_LEVEL_WARNING, "YOLOv8-ONNX-GPU"),
input_width(in_width),
input_height(in_height)
{
//
Ort::SessionOptions session_options;
OrtCUDAProviderOptions cuda_options; //
session_options.AppendExecutionProvider_CUDA(cuda_options);
//
session = std::make_unique<Ort::Session>(env, model_path, session_options);
//
//
input_name_str = session->GetInputNameAllocated(0, allocator).get();
output_name_str = session->GetOutputNameAllocated(0, allocator).get();
input_node_names.push_back(input_name_str.c_str());
output_node_names.push_back(output_name_str.c_str());
}
/**
* @brief
*/
std::vector<Detection> detect(
unsigned char* image_bytes,
int image_width,
int image_height,
float conf_threshold,
float iou_threshold)
{
//
cv::Mat image(image_height, image_width, CV_8UC3, image_bytes);
if (image.empty()) {
throw std::runtime_error("Input image is empty.");
}
//
int pad_w, pad_h;
float scale;
cv::Mat preprocessed_img = preprocess(image, input_width, input_height, pad_w, pad_h, scale); //
//
cv::Mat blob;
cv::dnn::blobFromImage(preprocessed_img, blob, 1 / 255.0, cv::Size(), cv::Scalar(), true, false);
std::vector<int64_t> input_shape = { 1, 3, (int64_t)input_height, (int64_t)input_width };
std::cout <<"input shape: " << input_shape[0] << "," << input_shape[1] << "," << input_shape[2] << "," << input_shape[3] << "," << std::endl;
//
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, blob.ptr<float>(), blob.total(), input_shape.data(), input_shape.size());
//
auto output_tensors = session->Run(Ort::RunOptions{ nullptr }, input_node_names.data(), &input_tensor, 1, output_node_names.data(), 1);
//
return postprocess(output_tensors[0], scale, pad_w, pad_h, image_width, image_height, conf_threshold, iou_threshold);
}
};
// ========================================================================
//
// ========================================================================
//
cv::Mat preprocess(const cv::Mat& img, int target_width, int target_height, int& pad_w, int& pad_h, float& scale) {
cv::Mat resized_img;
int w = img.cols;
int h = img.rows;
scale = std::min(static_cast<float>(target_width) / w, static_cast<float>(target_height) / h);
int new_w = static_cast<int>(w * scale);
int new_h = static_cast<int>(h * scale);
cv::resize(img, resized_img, cv::Size(new_w, new_h), 0, 0, cv::INTER_AREA);
pad_w = target_width - new_w; //
pad_h = target_height - new_h; //
//
int top = pad_h / 2;
int bottom = pad_h - top;
int left = pad_w / 2;
int right = pad_w - left;
//
cv::Mat padded_img;
//
cv::copyMakeBorder(resized_img, padded_img, top, bottom, left, right, cv::BORDER_CONSTANT, cv::Scalar(114, 114, 114));
return padded_img;
}
//
std::vector<Detection> postprocess(Ort::Value& output_tensor, float scale, int pad_w, int pad_h, int img_w, int img_h, float conf_threshold, float iou_threshold) {
const auto output_shape = output_tensor.GetTensorTypeAndShapeInfo().GetShape();
const float* raw_output = output_tensor.GetTensorData<float>();
int num_classes = static_cast<int>(output_shape[1]) - 4;
int num_proposals = static_cast<int>(output_shape[2]);
std::vector<cv::Rect> boxes;
std::vector<float> scores;
std::vector<int> class_ids;
cv::Mat raw_data_mat(num_classes + 4, num_proposals, CV_32F, (void*)raw_output);
raw_data_mat = raw_data_mat.t();
for (int i = 0; i < num_proposals; ++i) {
const float* proposal = raw_data_mat.ptr<float>(i);
const float* class_scores = proposal + 4;
float max_score = 0.0f;
int class_id = -1;
for (int j = 0; j < num_classes; ++j) {
if (class_scores[j] > max_score) {
max_score = class_scores[j];
class_id = j;
}
}
if (max_score > conf_threshold) {
float cx = proposal[0];
float cy = proposal[1];
float w = proposal[2];
float h = proposal[3];
int left = static_cast<int>((cx - w / 2 - (pad_w / 2.0f)) / scale);
int top = static_cast<int>((cy - h / 2 - (pad_w / 2.0f)) / scale);
int width = static_cast<int>(w / scale);
int height = static_cast<int>(h / scale);
left = std::max(0, std::min(left, img_w - 1));
top = std::max(0, std::min(top, img_h - 1));
width = std::min(width, img_w - left);
height = std::min(height, img_h - top);
boxes.push_back(cv::Rect(left, top, width, height));
scores.push_back(max_score);
class_ids.push_back(class_id);
}
}
std::vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, scores, conf_threshold, iou_threshold, nms_result);
std::vector<Detection> detections;
for (int idx : nms_result) {
detections.push_back({ class_ids[idx], scores[idx], boxes[idx].x, boxes[idx].y, boxes[idx].width, boxes[idx].height });
}
return detections;
}
} //
extern "C" {
// ========================================================================
//
// ========================================================================
YOLO_API void* create_detector(
const wchar_t* model_path,
int input_width,
int input_height)
{
try {
//
YoloDetector* detector = new YoloDetector(model_path, input_width, input_height);
//
return static_cast<void*>(detector);
}
catch (const Ort::Exception& e) {
std::cerr << "ONNX Runtime Error creating detector: " << e.what() << std::endl;
return nullptr;
}
catch (const std::exception& e) {
std::cerr << "Error creating detector: " << e.what() << std::endl;
return nullptr;
}
}
YOLO_API void free_detector(void* detector_handle)
{
if (detector_handle) {
YoloDetector* detector = static_cast<YoloDetector*>(detector_handle);
delete detector;
}
}
YOLO_API int perform_detection_on_session(
void* detector_handle,
unsigned char* image_bytes,
int image_width,
int image_height,
Detection** out_detections,
int* out_detections_count,
float conf_threshold,
float iou_threshold)
{
if (!detector_handle) return -1; //
//
YoloDetector* detector = static_cast<YoloDetector*>(detector_handle);
try {
//
std::vector<Detection> detections = detector->detect(
image_bytes, image_width, image_height,
conf_threshold, iou_threshold
);
//
*out_detections_count = static_cast<int>(detections.size());
if (*out_detections_count > 0) {
*out_detections = new Detection[*out_detections_count];
std::copy(detections.begin(), detections.end(), *out_detections);
}
else {
*out_detections = nullptr;
}
return 0; //
}
catch (const Ort::Exception& e) {
std::cerr << "ONNX Runtime Error during detection: " << e.what() << std::endl;
return -2;
}
catch (const std::exception& e) {
std::cerr << "Error during detection: " << e.what() << std::endl;
return -4;
}
}
// ========================================================================
//
// ========================================================================
YOLO_API int perform_detection(
const wchar_t* model_path,
unsigned char* image_bytes,
int image_width,
int image_height,
Detection** out_detections,
int* out_detections_count,
const char** class_names,
int class_names_count,
float conf_threshold,
float iou_threshold,
int input_width,
int input_height
) {
//
static Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "YOLOv8-ONNX-GPU");
static std::unique_ptr<Ort::Session> session = nullptr;
static std::wstring current_model_path = L"";
try {
if (!session || current_model_path != model_path) {
Ort::SessionOptions session_options;
OrtCUDAProviderOptions cuda_options;
session_options.AppendExecutionProvider_CUDA(cuda_options);
session = std::make_unique<Ort::Session>(env, model_path, session_options);
current_model_path = model_path;
}
std::vector<int64_t> input_shape = { 1, 3, input_height, input_width };
Ort::AllocatorWithDefaultOptions allocator;
std::string input_name_str = session->GetInputNameAllocated(0, allocator).get();
std::vector<const char*> input_node_names = { input_name_str.c_str() };
std::string output_name_str = session->GetOutputNameAllocated(0, allocator).get();
std::vector<const char*> output_node_names = { output_name_str.c_str() };
cv::Mat image(image_height, image_width, CV_8UC3, image_bytes);
if (image.empty()) return -1;
int pad_w, pad_h;
float scale;
cv::Mat preprocessed_img = preprocess(image, input_width, input_height, pad_w, pad_h, scale);
cv::Mat blob;
cv::dnn::blobFromImage(preprocessed_img, blob, 1 / 255.0, cv::Size(), cv::Scalar(), true, false);
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, blob.ptr<float>(), blob.total(), input_shape.data(), input_shape.size());
auto output_tensors = session->Run(Ort::RunOptions{ nullptr }, input_node_names.data(), &input_tensor, 1, output_node_names.data(), 1);
std::vector<Detection> detections = postprocess(output_tensors[0], scale, pad_w, pad_h, image_width, image_height, conf_threshold, iou_threshold);
*out_detections_count = static_cast<int>(detections.size());
if (*out_detections_count > 0) {
*out_detections = new Detection[*out_detections_count];
std::copy(detections.begin(), detections.end(), *out_detections);
}
else {
*out_detections = nullptr;
}
}
catch (const Ort::Exception& e) {
std::cerr << "ONNX Runtime <20>쳣: " << e.what() << std::endl;
return -2;
}
catch (const cv::Exception& e) {
std::cerr << "OpenCV <20>쳣: " << e.what() << std::endl;
return -3;
}
catch (const std::exception& e) {
std::cerr << "<EFBFBD><EFBFBD>׼<EFBFBD><EFBFBD><EFBFBD>쳣: " << e.what() << std::endl;
return -4;
}
return 0;
}
//
YOLO_API void free_memory(Detection* detections) {
delete[] detections;
}
YOLO_API void draw_and_encode_image(
unsigned char* image_bytes,
int image_width,
int image_height,
const Detection* detections,
int detections_count,
const char** class_names,
int class_names_count,
unsigned char** out_image_bytes,
int* out_image_size) {
cv::Mat image(image_height, image_width, CV_8UC3, image_bytes);
if (image.empty()) {
*out_image_bytes = nullptr;
*out_image_size = 0;
return;
}
for (int i = 0; i < detections_count; ++i) {
const auto& d = detections[i];
cv::rectangle(image, cv::Rect(d.x, d.y, d.width, d.height), cv::Scalar(0, 255, 0), 2);
std::string label = "Unknown";
if (d.class_id >= 0 && d.class_id < class_names_count) {
label = class_names[d.class_id];
}
label += " " + std::to_string(d.score).substr(0, 4);
cv::putText(image, label, cv::Point(d.x, d.y - 10), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 255, 0), 2);
}
std::vector<unsigned char> buf;
cv::imencode(".jpg", image, buf);
*out_image_size = static_cast<int>(buf.size());
*out_image_bytes = new unsigned char[*out_image_size];
std::copy(buf.begin(), buf.end(), *out_image_bytes);
}
YOLO_API void free_image_memory(unsigned char* image_bytes) {
delete[] image_bytes;
}
}