feat: draw fixed rectangle for intrusion detection

This commit is contained in:
GuanYuankai 2025-09-15 14:43:57 +08:00
parent 0d7bba41a1
commit 31d8740bee
3 changed files with 175 additions and 54 deletions

View File

@ -5,7 +5,7 @@ cmake_minimum_required(VERSION 3.4.1)
project(IntrusionDetectionService CXX)
# C++
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_FLAGS "-pthread")

View File

@ -2,14 +2,30 @@
#define RKYOLOV5S_H
#include "rknn_api.h"
#include "opencv2/core/core.hpp"
#include <map> // 用于存储跟踪目标
#include <mutex> // 确保线程安全
#include <string> // 使用 std::string
#include <vector> // 使用 std::vector
#include "postprocess.h"
// 前置声明
static void dump_tensor_attr(rknn_tensor_attr *attr);
static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz);
static unsigned char *load_model(const char *filename, int *model_size);
static int saveFloat(const char *file_name, float *output, int element_size);
// 用于跟踪单个目标的结构体
struct TrackedPerson
{
int id; // 唯一ID
cv::Rect box; // 当前位置
double entry_time; // 进入入侵区域的时间戳 (秒)
bool is_in_zone; // 是否在区域内
bool alarm_triggered; // 是否已触发报警
int frames_unseen; // 消失的帧数
};
class rkYolov5s
{
private:
@ -29,12 +45,24 @@ private:
float nms_threshold, box_conf_threshold;
// 入侵检测和跟踪相关成员
cv::Rect intrusion_zone; // 入侵区域
std::map<int, TrackedPerson> tracked_persons; // 存储所有被跟踪的人
int next_track_id; // 用于分配新的唯一ID
double intrusion_time_threshold; // 入侵时间阈值 (秒)
// 跟踪逻辑的私有方法
void update_tracker(detect_result_group_t &detect_result_group);
public:
rkYolov5s(const std::string &model_path);
int init(rknn_context *ctx_in, bool isChild);
rknn_context *get_pctx();
cv::Mat infer(cv::Mat &ori_img);
~rkYolov5s();
// 用于从外部设置入侵区域的公共方法
void set_intrusion_zone(const cv::Rect& zone);
};
#endif
#endif // RKYOLOV5S_H

View File

@ -1,16 +1,33 @@
#include <stdio.h>
#include <mutex>
#include "rknn_api.h"
#include <chrono> // 用于计时
#include <string> // 使用 std::string
#include <vector> // 使用 std::vector
#include <algorithm> // 使用 std::min/max
#include "postprocess.h"
#include "preprocess.h"
#include "rkYolov5s.hpp"
#include "coreNum.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "rknn_api.h"
#include "coreNum.hpp"
#include "rkYolov5s.hpp"
// 报警接口函数 (目前只打印信息)
void trigger_alarm(int person_id, const cv::Rect& box) {
printf("[ALARM] Intrusion detected! Person ID: %d at location (%d, %d, %d, %d)\n",
person_id, box.x, box.y, box.width, box.height);
// TODO: 在这里实现真正的报警逻辑,例如发送网络消息、写入数据库等。
}
// 获取当前时间的函数 (返回秒)
double get_current_time_seconds() {
return std::chrono::duration_cast<std::chrono::duration<double>>(
std::chrono::high_resolution_clock::now().time_since_epoch()
).count();
}
static void dump_tensor_attr(rknn_tensor_attr *attr)
{
@ -19,13 +36,6 @@ static void dump_tensor_attr(rknn_tensor_attr *attr)
{
shape_str += ", " + std::to_string(attr->dims[i]);
}
// printf(" index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, w_stride = %d, size_with_stride=%d, fmt=%s, "
// "type=%s, qnt_type=%s, "
// "zp=%d, scale=%f\n",
// attr->index, attr->name, attr->n_dims, shape_str.c_str(), attr->n_elems, attr->size, attr->w_stride,
// attr->size_with_stride, get_format_string(attr->fmt), get_type_string(attr->type),
// get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz)
@ -95,8 +105,19 @@ static int saveFloat(const char *file_name, float *output, int element_size)
rkYolov5s::rkYolov5s(const std::string &model_path)
{
this->model_path = model_path;
nms_threshold = NMS_THRESH; // 默认的NMS阈值
box_conf_threshold = BOX_THRESH; // 默认的置信度阈值
nms_threshold = NMS_THRESH;
box_conf_threshold = BOX_THRESH;
// 初始化跟踪器和入侵检测参数
next_track_id = 1;
intrusion_time_threshold = 3.0; // 报警时间阈值3秒
// 默认设置一个无效的入侵区域,将在第一帧时根据图像大小初始化
intrusion_zone = cv::Rect(0, 0, 0, 0);
}
void rkYolov5s::set_intrusion_zone(const cv::Rect& zone) {
std::lock_guard<std::mutex> lock(mtx);
this->intrusion_zone = zone;
}
int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
@ -104,7 +125,6 @@ int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
printf("Loading model...\n");
int model_data_size = 0;
model_data = load_model(model_path.c_str(), &model_data_size);
// 模型参数复用/Model parameter reuse
if (share_weight == true)
ret = rknn_dup_context(ctx_in, &ctx);
else
@ -115,7 +135,6 @@ int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
return -1;
}
// 设置模型绑定的核心/Set the core of the model that needs to be bound
rknn_core_mask core_mask;
switch (get_core_num())
{
@ -145,7 +164,6 @@ int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
}
printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version);
// 获取模型输入输出参数/Obtain the input and output parameters of the model
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret < 0)
{
@ -154,7 +172,6 @@ int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
}
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
// 设置输入参数/Set the input parameters
input_attrs = (rknn_tensor_attr *)calloc(io_num.n_input, sizeof(rknn_tensor_attr));
for (int i = 0; i < io_num.n_input; i++)
{
@ -168,7 +185,6 @@ int rkYolov5s::init(rknn_context *ctx_in, bool share_weight)
dump_tensor_attr(&(input_attrs[i]));
}
// 设置输出参数/Set the output parameters
output_attrs = (rknn_tensor_attr *)calloc(io_num.n_output, sizeof(rknn_tensor_attr));
for (int i = 0; i < io_num.n_output; i++)
{
@ -208,6 +224,94 @@ rknn_context *rkYolov5s::get_pctx()
return &ctx;
}
void rkYolov5s::update_tracker(detect_result_group_t &detect_result_group)
{
std::vector<cv::Rect> current_detections;
for (int i = 0; i < detect_result_group.count; i++) {
detect_result_t *det_result = &(detect_result_group.results[i]);
if (strcmp(det_result->name, "person") == 0) {
current_detections.push_back(cv::Rect(
det_result->box.left, det_result->box.top,
det_result->box.right - det_result->box.left,
det_result->box.bottom - det_result->box.top));
}
}
// 1. 对于已有的跟踪目标,增加其未见帧数
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ++it) {
it->second.frames_unseen++;
}
// 2. 将当前帧的检测结果与已有的跟踪目标进行匹配
for (const auto& det_box : current_detections) {
bool is_matched = false;
int best_match_id = -1;
double max_iou = 0.3; // IoU阈值用于判断是否为同一目标
for (auto const& [id, person] : tracked_persons) {
// 计算交并比 (Intersection over Union)
double iou = (double)(det_box & person.box).area() / (double)(det_box | person.box).area();
if (iou > max_iou) {
max_iou = iou;
best_match_id = id;
}
}
if (best_match_id != -1) {
// 匹配成功,更新目标信息
tracked_persons[best_match_id].box = det_box;
tracked_persons[best_match_id].frames_unseen = 0;
is_matched = true;
} else {
// 匹配失败,创建新的跟踪目标
TrackedPerson new_person;
new_person.id = next_track_id++;
new_person.box = det_box;
new_person.entry_time = 0;
new_person.is_in_zone = false;
new_person.alarm_triggered = false;
new_person.frames_unseen = 0;
tracked_persons[new_person.id] = new_person;
}
}
// 3. 处理和更新每个目标的状态
double current_time = get_current_time_seconds();
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ++it) {
TrackedPerson& person = it->second;
// 判断人员包围盒是否与入侵区域有交集
bool currently_in_zone = (intrusion_zone & person.box).area() > 0;
if (currently_in_zone) {
if (!person.is_in_zone) {
// 刚进入区域
person.is_in_zone = true;
person.entry_time = current_time;
} else {
// 已在区域内,检查是否超时
if (!person.alarm_triggered && (current_time - person.entry_time) > intrusion_time_threshold) {
person.alarm_triggered = true;
trigger_alarm(person.id, person.box);
}
}
} else {
// 不在区域内,重置状态
person.is_in_zone = false;
person.entry_time = 0;
person.alarm_triggered = false;
}
}
// 4. 移除消失太久的目标
for (auto it = tracked_persons.begin(); it != tracked_persons.end(); ) {
if (it->second.frames_unseen > 20) { // 超过20帧未见则移除
it = tracked_persons.erase(it);
} else {
++it;
}
}
}
cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
{
std::lock_guard<std::mutex> lock(mtx);
@ -220,14 +324,12 @@ cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
memset(&pads, 0, sizeof(BOX_RECT));
cv::Size target_size(width, height);
cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3);
// 计算缩放比例/Calculate the scaling ratio
float scale_w = (float)target_size.width / img.cols;
float scale_h = (float)target_size.height / img.rows;
// 图像缩放/Image scaling
if (img_width != width || img_height != height)
{
// rga
rga_buffer_t src;
rga_buffer_t dst;
memset(&src, 0, sizeof(src));
@ -237,13 +339,6 @@ cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
{
fprintf(stderr, "resize with rga error\n");
}
/*********
// opencv
float min_scale = std::min(scale_w, scale_h);
scale_w = min_scale;
scale_h = min_scale;
letterbox(img, resized_img, pads, min_scale, target_size);
*********/
inputs[0].buf = resized_img.data;
}
else
@ -260,11 +355,9 @@ cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
outputs[i].want_float = 0;
}
// 模型推理/Model inference
ret = rknn_run(ctx, NULL);
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
// 后处理/Post-processing
detect_result_group_t detect_result_group;
std::vector<float> out_scales;
std::vector<int32_t> out_zps;
@ -276,32 +369,32 @@ cv::Mat rkYolov5s::infer(cv::Mat &orig_img)
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width,
box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
// 绘制框体/Draw the box
char text[256];
for (int i = 0; i < detect_result_group.count; i++)
{
detect_result_t *det_result = &(detect_result_group.results[i]);
// 更新跟踪器状态
// 首次运行时,根据图像尺寸初始化入侵区域 (设定在画面中央)
if (intrusion_zone.width == 0 || intrusion_zone.height == 0) {
intrusion_zone = cv::Rect(orig_img.cols / 4, orig_img.rows / 4, orig_img.cols / 2, orig_img.rows / 2);
}
update_tracker(detect_result_group);
// ========================== 修改开始 ==========================
// 增加一个判断,只处理标签名称为 "person" 的结果
if (strcmp(det_result->name, "person") == 0)
{
sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
// 打印预测物体的信息/Prints information about the predicted object
// printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top,
// det_result->box.right, det_result->box.bottom, det_result->prop);
int x1 = det_result->box.left;
int y1 = det_result->box.top;
int x2 = det_result->box.right;
int y2 = det_result->box.bottom;
rectangle(orig_img, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(256, 0, 0, 256), 3);
putText(orig_img, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(255, 255, 255));
// 绘制入侵区域
cv::rectangle(orig_img, intrusion_zone, cv::Scalar(255, 255, 0), 2); // 黄色
// 绘制框体和报警状态
for (auto const& [id, person] : tracked_persons) {
// 根据是否触发报警决定颜色 (BGR: 红色 vs 绿色)
cv::Scalar box_color = person.alarm_triggered ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0);
int line_thickness = person.alarm_triggered ? 3 : 2;
cv::rectangle(orig_img, person.box, box_color, line_thickness);
std::string label = "Person " + std::to_string(id);
if (person.is_in_zone) {
label += " (In Zone)";
}
// ========================== 修改结束 ==========================
cv::putText(orig_img, label, cv::Point(person.box.x, person.box.y - 10),
cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
}
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
return orig_img;
}