Done. Grounding Fine-tune

This commit is contained in:
guanyuankai 2025-07-30 17:32:24 +08:00
parent 7d0144ee0a
commit cdf8b0a92b
5 changed files with 506 additions and 13 deletions

2
.gitignore vendored
View File

@ -31,4 +31,6 @@ web_demo_streaming
evaluation evaluation
requirements_web_demo.txt requirements_web_demo.txt
web_demo_mm.py web_demo_mm.py
output
output2

44
createDataset.py Normal file
View File

@ -0,0 +1,44 @@
import json
from datasets import Dataset
def load_and_convert_data(file_path):
"""加载并转换数据"""
loaded_data = []
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
loaded_data.append(json.loads(line))
# 将 loaded_data 转换为适合 Dataset 的格式
dataset_dicts = []
for item in loaded_data:
user_content = item[0]['content']
assistant_content = item[1]['content']
# 提取图像和文本信息
image_info = next((x for x in user_content if x['type'] == 'image'), None)
text_info = next((x for x in user_content if x['type'] == 'text'), None)
# 构造新的字典
dataset_entry = {
'role': 'user',
'image_path': image_info['image'] if image_info else None,
'question': text_info['text'] if text_info else None,
'assistant_answer': assistant_content
}
dataset_dicts.append(dataset_entry)
return dataset_dicts
# 分别加载 test 和 val 数据集
test_data_path = 'data_test.jsonl'
val_data_path = 'data_val.jsonl'
test_dataset_dicts = load_and_convert_data(test_data_path)
val_dataset_dicts = load_and_convert_data(val_data_path)
# 创建 Dataset 对象
test_dataset = Dataset.from_list(test_dataset_dicts)
val_dataset = Dataset.from_list(val_dataset_dicts)
print("Test and Val Datasets have been created.")

29
ds_zero2_no_offload.json Normal file
View File

@ -0,0 +1,29 @@
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}

View File

@ -106,33 +106,80 @@ def predict(messages, model):
return output_text[0] return output_text[0]
def load_and_convert_data(file_path):
"""加载并转换数据"""
loaded_data = []
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
loaded_data.append(json.loads(line))
# 将 loaded_data 转换为适合 Dataset 的格式
dataset_dicts = []
for item in loaded_data:
user_content = item[0]['content']
assistant_content = item[1]['content']
# 提取图像和文本信息
image_info = next((x for x in user_content if x['type'] == 'image'), None)
text_info = next((x for x in user_content if x['type'] == 'text'), None)
# 构造新的字典
dataset_entry = {
'role': 'user',
'image_path': image_info['image'] if image_info else None,
'question': text_info['text'] if text_info else None,
'assistant_answer': assistant_content
}
dataset_dicts.append(dataset_entry)
return dataset_dicts
# 在modelscope上下载Qwen2-VL模型到本地目录下 # 在modelscope上下载Qwen2-VL模型到本地目录下
# model_dir = snapshot_download("Qwen/Qwen2-VL-2B-Instruct", cache_dir="./", revision="master") # model_dir = snapshot_download("Qwen/Qwen2-VL-2B-Instruct", cache_dir="./", revision="master")
min_pixel = 256*28*28
max_pixel = 1280*28*28
# 使用Transformers加载模型权重 # 使用Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", use_fast=False, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", use_fast=False, trust_remote_code=True)
processor = AutoProcessor.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/") processor = AutoProcessor.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/")
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True,) model = Qwen2_5_VLForConditionalGeneration.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True,)
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法 model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法
# 处理数据集读取json文件 # 处理数据集读取json文件
# 拆分成训练集和测试集保存为data_vl_train.json和data_vl_test.json # 拆分成训练集和测试集保存为data_vl_train.json和data_vl_test.json
train_json_path = "data_vl.json" if True:
with open(train_json_path, 'r') as f: train_json_path = "data_vl.json"
data = json.load(f) with open(train_json_path, 'r') as f:
train_data = data[:-4] data = json.load(f)
test_data = data[-4:] train_data = data[:-4]
test_data = data[-4:]
with open("data_vl_train.json", "w") as f: with open("data_vl_train.json", "w") as f:
json.dump(train_data, f) json.dump(train_data, f)
with open("data_vl_test.json", "w") as f: with open("data_vl_test.json", "w") as f:
json.dump(test_data, f) json.dump(test_data, f)
train_ds = Dataset.from_json("data_vl_train.json") train_ds = Dataset.from_json("data_vl_train.json")
train_dataset = train_ds.map(process_func) # type: ignore train_dataset = train_ds.map(process_func) # type: ignore
else:
# 分别加载 test 和 val 数据集
test_data_path = 'data_test.jsonl'
val_data_path = 'data_val.jsonl'
test_dataset_dicts = load_and_convert_data(test_data_path)
val_dataset_dicts = load_and_convert_data(val_data_path)
# 创建 Dataset 对象
test_tmp__dataset = Dataset.from_list(test_dataset_dicts)
val_tmp_dataset = Dataset.from_list(val_dataset_dicts)
test_tmp_dataset = test_tmp__dataset.select(list(range(1000)))
val_tmp_dataset = val_tmp_dataset.select(list(range(50)))
test_dataset = test_tmp_dataset.map(process_func, batched=True,batch_size=4)
val_dataset = val_tmp_dataset.map(process_func, batched=True, batch_size=4)
# 配置LoRA # 配置LoRA
config = LoraConfig( config = LoraConfig(

371
train_grounding.py Normal file
View File

@ -0,0 +1,371 @@
import os
import sys
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2"
import torch, gc
gc.collect()
torch.cuda.empty_cache()
import deepspeed
DS_CONFIG = "ds_zero2_no_offload.json"
from datasets import Dataset
from modelscope import snapshot_download, AutoTokenizer
from swanlab.integration.transformers import SwanLabCallback
from qwen_vl_utils import process_vision_info
from peft import LoraConfig, TaskType, get_peft_model, PeftModel,get_peft_model_state_dict
from transformers import (
TrainingArguments, # type: ignore
Trainer, # type: ignore
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
)
from transformers.data.data_collator import DataCollatorForSeq2Seq
import swanlab
import json
# device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") # 多GPU时可指定起始位置/编号
# 检查 CUDA 是否可用
if torch.cuda.is_available():
# 从环境变量中获取 local_rank。DeepSpeed/PyTorch DDP 会自动设置这个变量。
# 如果环境变量不存在(例如在非分布式模式下运行),默认为 0。
local_rank = int(os.environ.get("LOCAL_RANK", "0"))
# 根据 local_rank 动态创建设备对象
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
print(f"Process with local_rank {local_rank} is using device: {device}")
else:
device = torch.device("cpu")
def load_and_convert_data(file_path):
"""加载并转换数据"""
loaded_data = []
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
loaded_data.append(json.loads(line))
# 将 loaded_data 转换为适合 Dataset 的格式
dataset_dicts = []
for item in loaded_data:
user_content = item[0]['content']
assistant_content = item[1]['content']
# 提取图像和文本信息
image_info = next((x for x in user_content if x['type'] == 'image'), None)
text_info = next((x for x in user_content if x['type'] == 'text'), None)
# 构造新的字典
dataset_entry = {
'role': 'user',
'image_path': image_info['image'] if image_info else None,
'question': text_info['text'] if text_info else None,
'assistant_answer': assistant_content
}
dataset_dicts.append(dataset_entry)
return dataset_dicts
def process_func_batch(examples):
MAX_LENGTH = 2048
input_ids, attention_mask, labels, pixel_values, image_grid_thw = [], [], [], [], []
for example in zip(examples["question"], examples["assistant_answer"], examples["image_path"]):
input_content, output_content, file_path = example
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": f"{file_path}",
"resized_height": 280,
"resized_width": 280,
},
{"type": "text", "text": input_content},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=False, # 先不填充
return_tensors="pt",
)
inputs_dict = {key: value.tolist() for key, value in inputs.items()}
instruction_input_ids = inputs_dict['input_ids'][0]
instruction_attention_mask = inputs_dict['attention_mask'][0]
response = tokenizer(f"{output_content}", add_special_tokens=False)
response_input_ids = response['input_ids']
response_attention_mask = response['attention_mask']
# 计算剩余可用长度给response
remaining_length = MAX_LENGTH - len(instruction_input_ids) - 1 # 减去一个PAD token的空间
if remaining_length < 0:
# 如果指令部分已经超过最大长度,则需要截断指令部分
truncation_length = len(instruction_input_ids) + remaining_length
instruction_input_ids = instruction_input_ids[:truncation_length]
instruction_attention_mask = instruction_attention_mask[:truncation_length]
remaining_length = 0
# 截断response部分以适应剩余空间
current_input_ids = (
instruction_input_ids + response_input_ids[:remaining_length] + [tokenizer.pad_token_id]
)
current_attention_mask = (
instruction_attention_mask + response_attention_mask[:remaining_length] + [1]
)
current_labels = (
[-100] * len(instruction_input_ids) +
response_input_ids[:remaining_length] +
[tokenizer.pad_token_id]
)
# 填充到MAX_LENGTH
if len(current_input_ids) < MAX_LENGTH:
current_input_ids += [tokenizer.pad_token_id] * (MAX_LENGTH - len(current_input_ids))
current_attention_mask += [0] * (MAX_LENGTH - len(current_attention_mask))
current_labels += [-100] * (MAX_LENGTH - len(current_labels))
input_ids.append(current_input_ids)
attention_mask.append(current_attention_mask)
labels.append(current_labels)
pixel_values.append(inputs_dict['pixel_values'])
image_grid_thw.append(torch.tensor(inputs_dict['image_grid_thw']).squeeze(0))
return {
"input_ids": torch.tensor(input_ids),
"attention_mask": torch.tensor(attention_mask),
"labels": torch.tensor(labels),
"pixel_values": torch.tensor(pixel_values),
"image_grid_thw": torch.stack(image_grid_thw)
}
def predict(messages, model):
# 准备推理
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
device = next(model.parameters()).device
# 将所有张量移动到指定的设备上
for key, value in inputs.items():
inputs[key] = value.to(device)
# 生成输出
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
del inputs
return output_text[0]
# 在modelscope上下载Qwen2-VL模型到本地目录下
# model_dir = snapshot_download("Qwen/Qwen2-VL-2B-Instruct", cache_dir="./", revision="master")
# 使用Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", use_fast=True)
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", min_pixels=min_pixels, max_pixels=max_pixels,use_fast=True)
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", device_map=device_map, torch_dtype=torch.bfloat16)
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法/
# 处理数据集读取json文件
# 分别加载 test 和 val 数据集
test_data_path = 'data_test.jsonl'
val_data_path = 'data_val.jsonl'
test_dataset_dicts = load_and_convert_data(test_data_path)
val_dataset_dicts = load_and_convert_data(val_data_path)
# 创建 Dataset 对象
test_tmp_dataset = Dataset.from_list(test_dataset_dicts)
val_tmp_dataset = Dataset.from_list(val_dataset_dicts)
indices = list(range(1000))
test_tmp_dataset = test_tmp_dataset.select(indices)
indices = list(range(50))
val_tmp_dataset = val_tmp_dataset.select(indices)
test_dataset = test_tmp_dataset.map(process_func_batch, batched=True,batch_size=4)
val_dataset = val_tmp_dataset.map(process_func_batch, batched=True, batch_size=4)
print("Test and Val Datasets have been created.")
# 配置LoRA
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
inference_mode=False, # 训练模式
r=64, # Lora 秩
lora_alpha=16, # Lora alaph具体作用参见 Lora 原理
lora_dropout=0.05, # Dropout 比例
bias="none",
)
# 获取LoRA模型
# 转换模型
peft_model = get_peft_model(model, config)
peft_model.config.use_cache = False # type: ignore
# 配置训练参数
args = TrainingArguments(
output_dir="./output2/Qwen2.5-VL-7B",
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
logging_steps=10,
logging_first_step=True,
num_train_epochs=4,
save_steps=50,
learning_rate=1e-4,
save_on_each_node=True,
gradient_checkpointing=True,
report_to="none",
# bf16=True,
fp16=True,
max_grad_norm=1.0,
deepspeed=DS_CONFIG
)
# 设置SwanLab回调
swanlab_callback = SwanLabCallback(
project="Qwen2.5-VL-finetune",
experiment_name="qwen2.5-vl-refcocog",
config={
"model": "https://modelscope.cn/models/Qwen/Qwen2.5-VL-7B-Instruct",
"dataset": "https://huggingface.co/datasets/Kangheng/refcocog",
"github": "https://github.com/datawhalechina/self-llm",
"prompt": "Please provide the bounding box for the following descriptio: ",
"train_data_number": len(test_dataset),
"lora_rank": 64,
"lora_alpha": 16,
"lora_dropout": 0.1,
},
)
# 配置Trainer
trainer = Trainer(
model=peft_model,
args=args,
train_dataset=test_dataset,
eval_dataset=val_dataset,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
callbacks=[swanlab_callback],
)
# 开启模型训练
trainer.train()
trainer.save_model('./output2/Qwen2.5-VL-7B')
trainer.save_state()
# ====================测试模式===================
# 配置测试参数
val_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
inference_mode=True, # 训练模式
r=64, # Lora 秩
lora_alpha=16, # Lora alaph具体作用参见 Lora 原理
lora_dropout=0.05, # Dropout 比例
bias="none",
)
# 获取测试模型
val_peft_model = PeftModel.from_pretrained(model, model_id="./output2/Qwen2.5-VL-7B/", config=val_config)
# 创建一个列表来保存所有需要的信息
results_to_save = []
# 同时创建test_image_list用于swanlab日志记录
test_image_list = []
for item in val_dataset:
if not isinstance (item, dict):
print("item解析错误")
sys.exit()
# 准备输入消息
messages = [{
"role": "user",
"content": [
{
"type": "image",
"image": item['image_path']
},
{
"type": "text",
"text": item['question']
}
]}]
# 获取模型预测
response = predict(messages, val_peft_model)
messages.append({"role": "assistant", "content": f"{response}"})
# 打印或记录预测信息
print(messages[-1])
# 添加预测结果、原始答案和图片路径到结果列表中
results_to_save.append({
'image_path': item['image_path'],
'question':item['question'],
'original_answer': item['assistant_answer'],
'predicted_answer': response,
})
# 同时添加到test_image_list用于SwanLab日志记录
test_image_list.append(swanlab.Image(item['image_path'], caption=response))
# 定义保存文件的路径
output_file_path = './predictions_results.json'
# 将结果写入JSON文件
with open(output_file_path, 'w', encoding='utf-8') as file:
json.dump(results_to_save, file, ensure_ascii=False, indent=4)
print(f"Results have been saved to {output_file_path}")
swanlab.init()
# 使用SwanLab记录预测结果
swanlab.log({"Prediction": test_image_list})
# 在Jupyter Notebook中运行时要停止SwanLab记录需要调用swanlab.finish()
swanlab.finish()