372 lines
12 KiB
Python
372 lines
12 KiB
Python
import os
|
||
import sys
|
||
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
||
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2"
|
||
import torch, gc
|
||
gc.collect()
|
||
torch.cuda.empty_cache()
|
||
import deepspeed
|
||
DS_CONFIG = "ds_zero2_no_offload.json"
|
||
from datasets import Dataset
|
||
from modelscope import snapshot_download, AutoTokenizer
|
||
from swanlab.integration.transformers import SwanLabCallback
|
||
from qwen_vl_utils import process_vision_info
|
||
from peft import LoraConfig, TaskType, get_peft_model, PeftModel,get_peft_model_state_dict
|
||
from transformers import (
|
||
TrainingArguments, # type: ignore
|
||
Trainer, # type: ignore
|
||
Qwen2_5_VLForConditionalGeneration,
|
||
AutoProcessor,
|
||
)
|
||
from transformers.data.data_collator import DataCollatorForSeq2Seq
|
||
import swanlab
|
||
import json
|
||
|
||
# device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") # 多GPU时可指定起始位置/编号
|
||
# 检查 CUDA 是否可用
|
||
if torch.cuda.is_available():
|
||
# 从环境变量中获取 local_rank。DeepSpeed/PyTorch DDP 会自动设置这个变量。
|
||
# 如果环境变量不存在(例如在非分布式模式下运行),默认为 0。
|
||
local_rank = int(os.environ.get("LOCAL_RANK", "0"))
|
||
|
||
# 根据 local_rank 动态创建设备对象
|
||
device = torch.device(f"cuda:{local_rank}")
|
||
|
||
torch.cuda.set_device(device)
|
||
|
||
print(f"Process with local_rank {local_rank} is using device: {device}")
|
||
else:
|
||
device = torch.device("cpu")
|
||
|
||
|
||
def load_and_convert_data(file_path):
|
||
"""加载并转换数据"""
|
||
loaded_data = []
|
||
with open(file_path, 'r', encoding='utf-8') as file:
|
||
for line in file:
|
||
loaded_data.append(json.loads(line))
|
||
|
||
# 将 loaded_data 转换为适合 Dataset 的格式
|
||
dataset_dicts = []
|
||
for item in loaded_data:
|
||
user_content = item[0]['content']
|
||
assistant_content = item[1]['content']
|
||
|
||
# 提取图像和文本信息
|
||
image_info = next((x for x in user_content if x['type'] == 'image'), None)
|
||
text_info = next((x for x in user_content if x['type'] == 'text'), None)
|
||
|
||
# 构造新的字典
|
||
dataset_entry = {
|
||
'role': 'user',
|
||
'image_path': image_info['image'] if image_info else None,
|
||
'question': text_info['text'] if text_info else None,
|
||
'assistant_answer': assistant_content
|
||
}
|
||
|
||
dataset_dicts.append(dataset_entry)
|
||
|
||
return dataset_dicts
|
||
|
||
|
||
|
||
def process_func_batch(examples):
|
||
MAX_LENGTH = 2048
|
||
input_ids, attention_mask, labels, pixel_values, image_grid_thw = [], [], [], [], []
|
||
|
||
for example in zip(examples["question"], examples["assistant_answer"], examples["image_path"]):
|
||
input_content, output_content, file_path = example
|
||
|
||
messages = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image",
|
||
"image": f"{file_path}",
|
||
"resized_height": 280,
|
||
"resized_width": 280,
|
||
},
|
||
{"type": "text", "text": input_content},
|
||
],
|
||
}
|
||
]
|
||
|
||
text = processor.apply_chat_template(
|
||
messages, tokenize=False, add_generation_prompt=True
|
||
)
|
||
image_inputs, video_inputs = process_vision_info(messages)
|
||
inputs = processor(
|
||
text=[text],
|
||
images=image_inputs,
|
||
videos=video_inputs,
|
||
padding=False, # 先不填充
|
||
return_tensors="pt",
|
||
)
|
||
|
||
inputs_dict = {key: value.tolist() for key, value in inputs.items()}
|
||
instruction_input_ids = inputs_dict['input_ids'][0]
|
||
instruction_attention_mask = inputs_dict['attention_mask'][0]
|
||
|
||
response = tokenizer(f"{output_content}", add_special_tokens=False)
|
||
response_input_ids = response['input_ids']
|
||
response_attention_mask = response['attention_mask']
|
||
|
||
# 计算剩余可用长度给response
|
||
remaining_length = MAX_LENGTH - len(instruction_input_ids) - 1 # 减去一个PAD token的空间
|
||
|
||
if remaining_length < 0:
|
||
# 如果指令部分已经超过最大长度,则需要截断指令部分
|
||
truncation_length = len(instruction_input_ids) + remaining_length
|
||
instruction_input_ids = instruction_input_ids[:truncation_length]
|
||
instruction_attention_mask = instruction_attention_mask[:truncation_length]
|
||
remaining_length = 0
|
||
|
||
# 截断response部分以适应剩余空间
|
||
current_input_ids = (
|
||
instruction_input_ids + response_input_ids[:remaining_length] + [tokenizer.pad_token_id]
|
||
)
|
||
|
||
current_attention_mask = (
|
||
instruction_attention_mask + response_attention_mask[:remaining_length] + [1]
|
||
)
|
||
current_labels = (
|
||
[-100] * len(instruction_input_ids) +
|
||
response_input_ids[:remaining_length] +
|
||
[tokenizer.pad_token_id]
|
||
)
|
||
|
||
# 填充到MAX_LENGTH
|
||
if len(current_input_ids) < MAX_LENGTH:
|
||
current_input_ids += [tokenizer.pad_token_id] * (MAX_LENGTH - len(current_input_ids))
|
||
current_attention_mask += [0] * (MAX_LENGTH - len(current_attention_mask))
|
||
current_labels += [-100] * (MAX_LENGTH - len(current_labels))
|
||
|
||
input_ids.append(current_input_ids)
|
||
attention_mask.append(current_attention_mask)
|
||
labels.append(current_labels)
|
||
pixel_values.append(inputs_dict['pixel_values'])
|
||
image_grid_thw.append(torch.tensor(inputs_dict['image_grid_thw']).squeeze(0))
|
||
|
||
return {
|
||
|
||
"input_ids": torch.tensor(input_ids),
|
||
"attention_mask": torch.tensor(attention_mask),
|
||
"labels": torch.tensor(labels),
|
||
"pixel_values": torch.tensor(pixel_values),
|
||
"image_grid_thw": torch.stack(image_grid_thw)
|
||
}
|
||
|
||
def predict(messages, model):
|
||
# 准备推理
|
||
text = processor.apply_chat_template(
|
||
messages, tokenize=False, add_generation_prompt=True
|
||
)
|
||
image_inputs, video_inputs = process_vision_info(messages)
|
||
|
||
inputs = processor(
|
||
text=[text],
|
||
images=image_inputs,
|
||
videos=video_inputs,
|
||
padding=True,
|
||
return_tensors="pt",
|
||
)
|
||
|
||
device = next(model.parameters()).device
|
||
# 将所有张量移动到指定的设备上
|
||
for key, value in inputs.items():
|
||
inputs[key] = value.to(device)
|
||
|
||
# 生成输出
|
||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||
generated_ids_trimmed = [
|
||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||
]
|
||
output_text = processor.batch_decode(
|
||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||
)
|
||
del inputs
|
||
|
||
return output_text[0]
|
||
|
||
|
||
# 在modelscope上下载Qwen2-VL模型到本地目录下
|
||
# model_dir = snapshot_download("Qwen/Qwen2-VL-2B-Instruct", cache_dir="./", revision="master")
|
||
|
||
# 使用Transformers加载模型权重
|
||
tokenizer = AutoTokenizer.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", use_fast=True)
|
||
min_pixels = 256*28*28
|
||
max_pixels = 1280*28*28
|
||
processor = AutoProcessor.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", min_pixels=min_pixels, max_pixels=max_pixels,use_fast=True)
|
||
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
||
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("/home/gyk/models/Qwen2.5-VL-7B-Instruct/", device_map=device_map, torch_dtype=torch.bfloat16)
|
||
|
||
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法/
|
||
|
||
# 处理数据集:读取json文件
|
||
# 分别加载 test 和 val 数据集
|
||
test_data_path = 'data_test.jsonl'
|
||
val_data_path = 'data_val.jsonl'
|
||
|
||
test_dataset_dicts = load_and_convert_data(test_data_path)
|
||
val_dataset_dicts = load_and_convert_data(val_data_path)
|
||
|
||
# 创建 Dataset 对象
|
||
test_tmp_dataset = Dataset.from_list(test_dataset_dicts)
|
||
val_tmp_dataset = Dataset.from_list(val_dataset_dicts)
|
||
|
||
indices = list(range(1000))
|
||
test_tmp_dataset = test_tmp_dataset.select(indices)
|
||
indices = list(range(50))
|
||
val_tmp_dataset = val_tmp_dataset.select(indices)
|
||
|
||
test_dataset = test_tmp_dataset.map(process_func_batch, batched=True,batch_size=4)
|
||
val_dataset = val_tmp_dataset.map(process_func_batch, batched=True, batch_size=4)
|
||
|
||
print("Test and Val Datasets have been created.")
|
||
|
||
# 配置LoRA
|
||
config = LoraConfig(
|
||
task_type=TaskType.CAUSAL_LM,
|
||
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
||
inference_mode=False, # 训练模式
|
||
r=64, # Lora 秩
|
||
lora_alpha=16, # Lora alaph,具体作用参见 Lora 原理
|
||
lora_dropout=0.05, # Dropout 比例
|
||
bias="none",
|
||
)
|
||
|
||
# 获取LoRA模型
|
||
# 转换模型
|
||
peft_model = get_peft_model(model, config)
|
||
peft_model.config.use_cache = False # type: ignore
|
||
|
||
|
||
|
||
# 配置训练参数
|
||
args = TrainingArguments(
|
||
output_dir="./output2/Qwen2.5-VL-7B",
|
||
per_device_train_batch_size=2,
|
||
gradient_accumulation_steps=8,
|
||
logging_steps=10,
|
||
logging_first_step=True,
|
||
num_train_epochs=4,
|
||
save_steps=50,
|
||
learning_rate=1e-4,
|
||
save_on_each_node=True,
|
||
gradient_checkpointing=True,
|
||
report_to="none",
|
||
# bf16=True,
|
||
fp16=True,
|
||
max_grad_norm=1.0,
|
||
deepspeed=DS_CONFIG
|
||
)
|
||
|
||
# 设置SwanLab回调
|
||
swanlab_callback = SwanLabCallback(
|
||
project="Qwen2.5-VL-finetune",
|
||
experiment_name="qwen2.5-vl-refcocog",
|
||
config={
|
||
"model": "https://modelscope.cn/models/Qwen/Qwen2.5-VL-7B-Instruct",
|
||
"dataset": "https://huggingface.co/datasets/Kangheng/refcocog",
|
||
"github": "https://github.com/datawhalechina/self-llm",
|
||
"prompt": "Please provide the bounding box for the following descriptio: ",
|
||
"train_data_number": len(test_dataset),
|
||
"lora_rank": 64,
|
||
"lora_alpha": 16,
|
||
"lora_dropout": 0.1,
|
||
},
|
||
)
|
||
|
||
# 配置Trainer
|
||
trainer = Trainer(
|
||
model=peft_model,
|
||
args=args,
|
||
train_dataset=test_dataset,
|
||
eval_dataset=val_dataset,
|
||
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
|
||
callbacks=[swanlab_callback],
|
||
)
|
||
|
||
|
||
# 开启模型训练
|
||
trainer.train()
|
||
trainer.save_model('./output2/Qwen2.5-VL-7B')
|
||
trainer.save_state()
|
||
|
||
|
||
# ====================测试模式===================
|
||
# 配置测试参数
|
||
val_config = LoraConfig(
|
||
task_type=TaskType.CAUSAL_LM,
|
||
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
||
inference_mode=True, # 训练模式
|
||
r=64, # Lora 秩
|
||
lora_alpha=16, # Lora alaph,具体作用参见 Lora 原理
|
||
lora_dropout=0.05, # Dropout 比例
|
||
bias="none",
|
||
)
|
||
|
||
|
||
# 获取测试模型
|
||
val_peft_model = PeftModel.from_pretrained(model, model_id="./output2/Qwen2.5-VL-7B/", config=val_config)
|
||
|
||
|
||
# 创建一个列表来保存所有需要的信息
|
||
results_to_save = []
|
||
|
||
# 同时创建test_image_list用于swanlab日志记录
|
||
test_image_list = []
|
||
|
||
|
||
for item in val_dataset:
|
||
if not isinstance (item, dict):
|
||
print("item解析错误")
|
||
sys.exit()
|
||
# 准备输入消息
|
||
messages = [{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image",
|
||
"image": item['image_path']
|
||
},
|
||
{
|
||
"type": "text",
|
||
"text": item['question']
|
||
}
|
||
]}]
|
||
|
||
# 获取模型预测
|
||
response = predict(messages, val_peft_model)
|
||
messages.append({"role": "assistant", "content": f"{response}"})
|
||
|
||
# 打印或记录预测信息
|
||
print(messages[-1])
|
||
|
||
# 添加预测结果、原始答案和图片路径到结果列表中
|
||
results_to_save.append({
|
||
'image_path': item['image_path'],
|
||
'question':item['question'],
|
||
'original_answer': item['assistant_answer'],
|
||
'predicted_answer': response,
|
||
})
|
||
|
||
# 同时添加到test_image_list用于SwanLab日志记录
|
||
test_image_list.append(swanlab.Image(item['image_path'], caption=response))
|
||
|
||
# 定义保存文件的路径
|
||
output_file_path = './predictions_results.json'
|
||
|
||
# 将结果写入JSON文件
|
||
with open(output_file_path, 'w', encoding='utf-8') as file:
|
||
json.dump(results_to_save, file, ensure_ascii=False, indent=4)
|
||
|
||
print(f"Results have been saved to {output_file_path}")
|
||
swanlab.init()
|
||
# 使用SwanLab记录预测结果
|
||
swanlab.log({"Prediction": test_image_list})
|
||
|
||
# 在Jupyter Notebook中运行时要停止SwanLab记录,需要调用swanlab.finish()
|
||
swanlab.finish()
|