Initial commit

This commit is contained in:
guanyuankai 2025-07-31 09:10:03 +08:00
commit eae2961d5b
3 changed files with 364 additions and 0 deletions

209
.gitignore vendored Normal file
View File

@ -0,0 +1,209 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[codz]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py.cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# UV
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
#uv.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
#poetry.toml
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
#pdm.lock
#pdm.toml
.pdm-python
.pdm-build/
# pixi
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
#pixi.lock
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
# in the .venv directory. It is recommended not to include this directory in version control.
.pixi
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.envrc
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# Abstra
# Abstra is an AI-powered process automation framework.
# Ignore directories containing user credentials, local state, and settings.
# Learn more at https://abstra.io/docs
.abstra/
# Visual Studio Code
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
# and can be added to the global gitignore or merged into this file. However, if you prefer,
# you could uncomment the following to ignore the entire vscode folder
# .vscode/
# Ruff stuff:
.ruff_cache/
# PyPI configuration file
.pypirc
# Marimo
marimo/_static/
marimo/_lsp/
__marimo__/
# Streamlit
.streamlit/secrets.toml
#项目文件
Safety_Detection_Project
#模型
*.pt

123
auto_run_yolo_onnx.py Normal file
View File

@ -0,0 +1,123 @@
import yaml
from ultralytics import YOLO
import os
import glob
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
def find_latest_run_dir(project_path='runs/detect/default_project'):
"""
在指定的项目路径下根据文件夹的修改时间找到最新的 'train' 目录
"""
if not os.path.exists(project_path):
return None
train_dirs = [d for d in glob.glob(os.path.join(project_path, 'train*')) if os.path.isdir(d)]
if not train_dirs:
return None
latest_dir = max(train_dirs, key=os.path.getmtime)
return latest_dir
def run_pipeline(config_path='config.yaml'):
"""
读取配置文件并执行YOLO训练和导出流程
"""
# 1. --- 读取配置文件 ---
try:
with open(config_path, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
print("✅ 配置文件加载成功!")
print(f"项目名称: {config['project_name']}")
except Exception as e:
print(f"❌ 加载配置文件时发生错误: {e}")
return
# 提取核心配置
base_model = config['base_model']
data_yaml_path = config['data_yaml']
project_name = config['project_name']
model = YOLO(base_model)
print(f"✅ 模型 '{base_model}' 初始化成功。")
best_model_path = None
# 2. --- 执行训练 ---
if config.get('run_training', False):
print("\n🚀 开始YOLO训练...")
try:
results = model.train(
data=data_yaml_path,
epochs=config['epochs'],
imgsz=config['imgsz'],
batch=config['batch_size'],
workers=config['workers'],
project=project_name,
name='train'
)
final_results = results[0] if isinstance(results, (list, tuple)) else results
assert final_results is not None and hasattr(final_results, 'save_dir'), \
"训练未产生一个包含保存目录的有效结果对象。"
best_model_path = os.path.join(final_results.save_dir, 'weights/best.pt')
print(f"✅ 训练完成!最佳模型已保存在: {best_model_path}")
except Exception as e:
print(f"❌ 训练过程中发生错误: {e}")
return
else:
print("\n⏩ 根据配置,跳过训练步骤。")
if config.get('run_export', False):
print(" 正在查找最新的训练结果...")
project_path = os.path.join(ROOT_DIR, project_name)
latest_run_dir = find_latest_run_dir(project_path)
if latest_run_dir:
potential_model_path = os.path.join(latest_run_dir, 'weights', 'best.pt')
if os.path.exists(potential_model_path):
best_model_path = potential_model_path
print(f"✅ 成功找到最新的模型: {best_model_path}")
else:
print(f"❌ 在最新的训练目录 '{latest_run_dir}' 中未找到 'best.pt' 文件。")
else:
print(f"❌ 在项目 '{project_name}' 中未找到任何过往的训练结果。")
# 3. --- 执行导出 ---
print(f"root_dir:{ROOT_DIR}")
# print(f"run_export:{config.get('run_export', False)}")
print(f"best model path:{best_model_path}")
if config.get('run_export', False) and best_model_path:
# --- 修改开始:增加最终的安全检查 ---
# 确保 best_model_path 是一个字符串,而不是元组或列表
if isinstance(best_model_path, (list, tuple)):
print(f"⚠️ 检测到模型路径为序列类型,自动提取第一个元素。原始值: {best_model_path}")
best_model_path = best_model_path[0]
# --- 修改结束 ---
print(f"\n🚀 开始将模型 '{best_model_path}' 导出为 {config['export_format']} 格式...")
try:
model_to_export = YOLO(best_model_path)
model_to_export.export(
format=config['export_format'],
imgsz=config['imgsz'],
half=config.get('half_precision', False)
)
exported_file_name = os.path.basename(best_model_path).replace('.pt', f".{config['export_format']}")
exported_file_path = os.path.join(os.path.dirname(best_model_path), exported_file_name)
print(f"✅ 导出成功!文件已保存在: {exported_file_path}")
except Exception as e:
print(f"❌ 导出过程中发生错误: {e}")
elif config.get('run_export', False):
print("\n⏩ 跳过导出步骤,因为未找到有效的模型路径。")
else:
print("\n⏩ 根据配置,跳过导出步骤。")
print("\n🎉 自动化流程执行完毕!")
if __name__ == '__main__':
run_pipeline()

32
config.yaml Normal file
View File

@ -0,0 +1,32 @@
# ===================================================================
# 自动化训练与导出配置文件
# ===================================================================
# --- 项目与模型设置 ---
# 项目名称,所有训练结果将保存在 runs/detect/{project_name} 文件夹下
project_name: 'Safety_Detection_Project'
# 基础模型:可以是官方的预训练模型 (如 yolov8n.pt), 也可以是你自己的 .pt 文件路径
base_model: 'yolo11n.pt'
# 数据集配置文件:【非常重要】请务必修改为你自己的 data .yaml 文件的绝对或相对路径
data_yaml: 'coco128.yaml'
# --- 流程控制 ---
# 是否执行训练步骤
run_training: false
# 是否执行导出步骤
run_export: true
# --- 训练参数 ---
epochs: 100
imgsz: 640
batch_size: 16
# 使用多少个CPU核心进行数据加载0表示只用主进程
workers: 8
# --- 导出参数 ---
# 目标格式 (e.g., onnx, tensorrt, coreml)
export_format: 'onnx'
# 是否使用半精度(FP16)导出,可以提速并减小文件大小
half_precision: true