Initial commit
This commit is contained in:
commit
eae2961d5b
|
|
@ -0,0 +1,209 @@
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[codz]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py.cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
cover/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
# .python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# UV
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
#uv.lock
|
||||||
|
|
||||||
|
# poetry
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||||
|
#poetry.lock
|
||||||
|
#poetry.toml
|
||||||
|
|
||||||
|
# pdm
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||||
|
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
||||||
|
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
||||||
|
#pdm.lock
|
||||||
|
#pdm.toml
|
||||||
|
.pdm-python
|
||||||
|
.pdm-build/
|
||||||
|
|
||||||
|
# pixi
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
||||||
|
#pixi.lock
|
||||||
|
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
||||||
|
# in the .venv directory. It is recommended not to include this directory in version control.
|
||||||
|
.pixi
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.envrc
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||||
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
|
#.idea/
|
||||||
|
|
||||||
|
# Abstra
|
||||||
|
# Abstra is an AI-powered process automation framework.
|
||||||
|
# Ignore directories containing user credentials, local state, and settings.
|
||||||
|
# Learn more at https://abstra.io/docs
|
||||||
|
.abstra/
|
||||||
|
|
||||||
|
# Visual Studio Code
|
||||||
|
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
||||||
|
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
||||||
|
# you could uncomment the following to ignore the entire vscode folder
|
||||||
|
# .vscode/
|
||||||
|
|
||||||
|
# Ruff stuff:
|
||||||
|
.ruff_cache/
|
||||||
|
|
||||||
|
# PyPI configuration file
|
||||||
|
.pypirc
|
||||||
|
|
||||||
|
# Marimo
|
||||||
|
marimo/_static/
|
||||||
|
marimo/_lsp/
|
||||||
|
__marimo__/
|
||||||
|
|
||||||
|
# Streamlit
|
||||||
|
.streamlit/secrets.toml
|
||||||
|
|
||||||
|
#项目文件
|
||||||
|
Safety_Detection_Project
|
||||||
|
|
||||||
|
#模型
|
||||||
|
*.pt
|
||||||
|
|
@ -0,0 +1,123 @@
|
||||||
|
import yaml
|
||||||
|
from ultralytics import YOLO
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
|
||||||
|
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
def find_latest_run_dir(project_path='runs/detect/default_project'):
|
||||||
|
"""
|
||||||
|
在指定的项目路径下,根据文件夹的修改时间找到最新的 'train' 目录。
|
||||||
|
"""
|
||||||
|
if not os.path.exists(project_path):
|
||||||
|
return None
|
||||||
|
train_dirs = [d for d in glob.glob(os.path.join(project_path, 'train*')) if os.path.isdir(d)]
|
||||||
|
if not train_dirs:
|
||||||
|
return None
|
||||||
|
latest_dir = max(train_dirs, key=os.path.getmtime)
|
||||||
|
return latest_dir
|
||||||
|
|
||||||
|
def run_pipeline(config_path='config.yaml'):
|
||||||
|
"""
|
||||||
|
读取配置文件并执行YOLO训练和导出流程。
|
||||||
|
"""
|
||||||
|
# 1. --- 读取配置文件 ---
|
||||||
|
try:
|
||||||
|
with open(config_path, 'r', encoding='utf-8') as f:
|
||||||
|
config = yaml.safe_load(f)
|
||||||
|
print("✅ 配置文件加载成功!")
|
||||||
|
print(f"项目名称: {config['project_name']}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ 加载配置文件时发生错误: {e}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 提取核心配置
|
||||||
|
base_model = config['base_model']
|
||||||
|
data_yaml_path = config['data_yaml']
|
||||||
|
project_name = config['project_name']
|
||||||
|
|
||||||
|
model = YOLO(base_model)
|
||||||
|
print(f"✅ 模型 '{base_model}' 初始化成功。")
|
||||||
|
|
||||||
|
best_model_path = None
|
||||||
|
|
||||||
|
# 2. --- 执行训练 ---
|
||||||
|
if config.get('run_training', False):
|
||||||
|
print("\n🚀 开始YOLO训练...")
|
||||||
|
try:
|
||||||
|
results = model.train(
|
||||||
|
data=data_yaml_path,
|
||||||
|
epochs=config['epochs'],
|
||||||
|
imgsz=config['imgsz'],
|
||||||
|
batch=config['batch_size'],
|
||||||
|
workers=config['workers'],
|
||||||
|
project=project_name,
|
||||||
|
name='train'
|
||||||
|
)
|
||||||
|
|
||||||
|
final_results = results[0] if isinstance(results, (list, tuple)) else results
|
||||||
|
|
||||||
|
assert final_results is not None and hasattr(final_results, 'save_dir'), \
|
||||||
|
"训练未产生一个包含保存目录的有效结果对象。"
|
||||||
|
|
||||||
|
best_model_path = os.path.join(final_results.save_dir, 'weights/best.pt')
|
||||||
|
|
||||||
|
print(f"✅ 训练完成!最佳模型已保存在: {best_model_path}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ 训练过程中发生错误: {e}")
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
print("\n⏩ 根据配置,跳过训练步骤。")
|
||||||
|
if config.get('run_export', False):
|
||||||
|
print(" 正在查找最新的训练结果...")
|
||||||
|
project_path = os.path.join(ROOT_DIR, project_name)
|
||||||
|
latest_run_dir = find_latest_run_dir(project_path)
|
||||||
|
|
||||||
|
if latest_run_dir:
|
||||||
|
potential_model_path = os.path.join(latest_run_dir, 'weights', 'best.pt')
|
||||||
|
if os.path.exists(potential_model_path):
|
||||||
|
best_model_path = potential_model_path
|
||||||
|
print(f"✅ 成功找到最新的模型: {best_model_path}")
|
||||||
|
else:
|
||||||
|
print(f"❌ 在最新的训练目录 '{latest_run_dir}' 中未找到 'best.pt' 文件。")
|
||||||
|
else:
|
||||||
|
print(f"❌ 在项目 '{project_name}' 中未找到任何过往的训练结果。")
|
||||||
|
|
||||||
|
# 3. --- 执行导出 ---
|
||||||
|
print(f"root_dir:{ROOT_DIR}")
|
||||||
|
# print(f"run_export:{config.get('run_export', False)}")
|
||||||
|
print(f"best model path:{best_model_path}")
|
||||||
|
if config.get('run_export', False) and best_model_path:
|
||||||
|
|
||||||
|
# --- 修改开始:增加最终的安全检查 ---
|
||||||
|
# 确保 best_model_path 是一个字符串,而不是元组或列表
|
||||||
|
if isinstance(best_model_path, (list, tuple)):
|
||||||
|
print(f"⚠️ 检测到模型路径为序列类型,自动提取第一个元素。原始值: {best_model_path}")
|
||||||
|
best_model_path = best_model_path[0]
|
||||||
|
# --- 修改结束 ---
|
||||||
|
|
||||||
|
print(f"\n🚀 开始将模型 '{best_model_path}' 导出为 {config['export_format']} 格式...")
|
||||||
|
try:
|
||||||
|
model_to_export = YOLO(best_model_path)
|
||||||
|
|
||||||
|
model_to_export.export(
|
||||||
|
format=config['export_format'],
|
||||||
|
imgsz=config['imgsz'],
|
||||||
|
half=config.get('half_precision', False)
|
||||||
|
)
|
||||||
|
|
||||||
|
exported_file_name = os.path.basename(best_model_path).replace('.pt', f".{config['export_format']}")
|
||||||
|
exported_file_path = os.path.join(os.path.dirname(best_model_path), exported_file_name)
|
||||||
|
print(f"✅ 导出成功!文件已保存在: {exported_file_path}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ 导出过程中发生错误: {e}")
|
||||||
|
elif config.get('run_export', False):
|
||||||
|
print("\n⏩ 跳过导出步骤,因为未找到有效的模型路径。")
|
||||||
|
else:
|
||||||
|
print("\n⏩ 根据配置,跳过导出步骤。")
|
||||||
|
|
||||||
|
print("\n🎉 自动化流程执行完毕!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
run_pipeline()
|
||||||
|
|
@ -0,0 +1,32 @@
|
||||||
|
# ===================================================================
|
||||||
|
# 自动化训练与导出配置文件
|
||||||
|
# ===================================================================
|
||||||
|
|
||||||
|
# --- 项目与模型设置 ---
|
||||||
|
# 项目名称,所有训练结果将保存在 runs/detect/{project_name} 文件夹下
|
||||||
|
project_name: 'Safety_Detection_Project'
|
||||||
|
|
||||||
|
# 基础模型:可以是官方的预训练模型 (如 yolov8n.pt), 也可以是你自己的 .pt 文件路径
|
||||||
|
base_model: 'yolo11n.pt'
|
||||||
|
|
||||||
|
# 数据集配置文件:【非常重要】请务必修改为你自己的 data .yaml 文件的绝对或相对路径
|
||||||
|
data_yaml: 'coco128.yaml'
|
||||||
|
|
||||||
|
# --- 流程控制 ---
|
||||||
|
# 是否执行训练步骤
|
||||||
|
run_training: false
|
||||||
|
# 是否执行导出步骤
|
||||||
|
run_export: true
|
||||||
|
|
||||||
|
# --- 训练参数 ---
|
||||||
|
epochs: 100
|
||||||
|
imgsz: 640
|
||||||
|
batch_size: 16
|
||||||
|
# 使用多少个CPU核心进行数据加载,0表示只用主进程
|
||||||
|
workers: 8
|
||||||
|
|
||||||
|
# --- 导出参数 ---
|
||||||
|
# 目标格式 (e.g., onnx, tensorrt, coreml)
|
||||||
|
export_format: 'onnx'
|
||||||
|
# 是否使用半精度(FP16)导出,可以提速并减小文件大小
|
||||||
|
half_precision: true
|
||||||
Reference in New Issue