import yaml from ultralytics import YOLO import os import glob ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) def find_latest_run_dir(project_path='runs/detect/default_project'): """ 在指定的项目路径下,根据文件夹的修改时间找到最新的 'train' 目录。 """ if not os.path.exists(project_path): return None train_dirs = [d for d in glob.glob(os.path.join(project_path, 'train*')) if os.path.isdir(d)] if not train_dirs: return None latest_dir = max(train_dirs, key=os.path.getmtime) return latest_dir def run_pipeline(config_path='config.yaml'): """ 读取配置文件并执行YOLO训练和导出流程。 """ # 1. --- 读取配置文件 --- try: with open(config_path, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) print("✅ 配置文件加载成功!") print(f"项目名称: {config['project_name']}") except Exception as e: print(f"❌ 加载配置文件时发生错误: {e}") return # 提取核心配置 base_model = config['base_model'] data_yaml_path = config['data_yaml'] project_name = config['project_name'] model = YOLO(base_model) print(f"✅ 模型 '{base_model}' 初始化成功。") best_model_path = None # 2. --- 执行训练 --- if config.get('run_training', False): print("\n🚀 开始YOLO训练...") try: results = model.train( data=data_yaml_path, epochs=config['epochs'], imgsz=config['imgsz'], batch=config['batch_size'], workers=config['workers'], project=project_name, name='train' ) final_results = results[0] if isinstance(results, (list, tuple)) else results assert final_results is not None and hasattr(final_results, 'save_dir'), \ "训练未产生一个包含保存目录的有效结果对象。" best_model_path = os.path.join(final_results.save_dir, 'weights/best.pt') print(f"✅ 训练完成!最佳模型已保存在: {best_model_path}") except Exception as e: print(f"❌ 训练过程中发生错误: {e}") return else: print("\n⏩ 根据配置,跳过训练步骤。") if config.get('run_export', False): print(" 正在查找最新的训练结果...") project_path = os.path.join(ROOT_DIR, project_name) latest_run_dir = find_latest_run_dir(project_path) if latest_run_dir: potential_model_path = os.path.join(latest_run_dir, 'weights', 'best.pt') if os.path.exists(potential_model_path): best_model_path = potential_model_path print(f"✅ 成功找到最新的模型: {best_model_path}") else: print(f"❌ 在最新的训练目录 '{latest_run_dir}' 中未找到 'best.pt' 文件。") else: print(f"❌ 在项目 '{project_name}' 中未找到任何过往的训练结果。") # 3. --- 执行导出 --- print(f"root_dir:{ROOT_DIR}") # print(f"run_export:{config.get('run_export', False)}") print(f"best model path:{best_model_path}") if config.get('run_export', False) and best_model_path: # --- 修改开始:增加最终的安全检查 --- # 确保 best_model_path 是一个字符串,而不是元组或列表 if isinstance(best_model_path, (list, tuple)): print(f"⚠️ 检测到模型路径为序列类型,自动提取第一个元素。原始值: {best_model_path}") best_model_path = best_model_path[0] # --- 修改结束 --- print(f"\n🚀 开始将模型 '{best_model_path}' 导出为 {config['export_format']} 格式...") try: model_to_export = YOLO(best_model_path) model_to_export.export( format=config['export_format'], imgsz=config['imgsz'], half=config.get('half_precision', False) ) exported_file_name = os.path.basename(best_model_path).replace('.pt', f".{config['export_format']}") exported_file_path = os.path.join(os.path.dirname(best_model_path), exported_file_name) print(f"✅ 导出成功!文件已保存在: {exported_file_path}") except Exception as e: print(f"❌ 导出过程中发生错误: {e}") elif config.get('run_export', False): print("\n⏩ 跳过导出步骤,因为未找到有效的模型路径。") else: print("\n⏩ 根据配置,跳过导出步骤。") print("\n🎉 自动化流程执行完毕!") if __name__ == '__main__': run_pipeline()