This repository has been archived on 2025-11-14. You can view files and clone it, but cannot push or open issues or pull requests.
yolo-automatic-training/auto_run_yolo_onnx.py

123 lines
4.9 KiB
Python

import yaml
from ultralytics import YOLO
import os
import glob
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
def find_latest_run_dir(project_path='runs/detect/default_project'):
"""
在指定的项目路径下,根据文件夹的修改时间找到最新的 'train' 目录。
"""
if not os.path.exists(project_path):
return None
train_dirs = [d for d in glob.glob(os.path.join(project_path, 'train*')) if os.path.isdir(d)]
if not train_dirs:
return None
latest_dir = max(train_dirs, key=os.path.getmtime)
return latest_dir
def run_pipeline(config_path='config.yaml'):
"""
读取配置文件并执行YOLO训练和导出流程。
"""
# 1. --- 读取配置文件 ---
try:
with open(config_path, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
print("✅ 配置文件加载成功!")
print(f"项目名称: {config['project_name']}")
except Exception as e:
print(f"❌ 加载配置文件时发生错误: {e}")
return
# 提取核心配置
base_model = config['base_model']
data_yaml_path = config['data_yaml']
project_name = config['project_name']
model = YOLO(base_model)
print(f"✅ 模型 '{base_model}' 初始化成功。")
best_model_path = None
# 2. --- 执行训练 ---
if config.get('run_training', False):
print("\n🚀 开始YOLO训练...")
try:
results = model.train(
data=data_yaml_path,
epochs=config['epochs'],
imgsz=config['imgsz'],
batch=config['batch_size'],
workers=config['workers'],
project=project_name,
name='train'
)
final_results = results[0] if isinstance(results, (list, tuple)) else results
assert final_results is not None and hasattr(final_results, 'save_dir'), \
"训练未产生一个包含保存目录的有效结果对象。"
best_model_path = os.path.join(final_results.save_dir, 'weights/best.pt')
print(f"✅ 训练完成!最佳模型已保存在: {best_model_path}")
except Exception as e:
print(f"❌ 训练过程中发生错误: {e}")
return
else:
print("\n⏩ 根据配置,跳过训练步骤。")
if config.get('run_export', False):
print(" 正在查找最新的训练结果...")
project_path = os.path.join(ROOT_DIR, project_name)
latest_run_dir = find_latest_run_dir(project_path)
if latest_run_dir:
potential_model_path = os.path.join(latest_run_dir, 'weights', 'best.pt')
if os.path.exists(potential_model_path):
best_model_path = potential_model_path
print(f"✅ 成功找到最新的模型: {best_model_path}")
else:
print(f"❌ 在最新的训练目录 '{latest_run_dir}' 中未找到 'best.pt' 文件。")
else:
print(f"❌ 在项目 '{project_name}' 中未找到任何过往的训练结果。")
# 3. --- 执行导出 ---
print(f"root_dir:{ROOT_DIR}")
# print(f"run_export:{config.get('run_export', False)}")
print(f"best model path:{best_model_path}")
if config.get('run_export', False) and best_model_path:
# --- 修改开始:增加最终的安全检查 ---
# 确保 best_model_path 是一个字符串,而不是元组或列表
if isinstance(best_model_path, (list, tuple)):
print(f"⚠️ 检测到模型路径为序列类型,自动提取第一个元素。原始值: {best_model_path}")
best_model_path = best_model_path[0]
# --- 修改结束 ---
print(f"\n🚀 开始将模型 '{best_model_path}' 导出为 {config['export_format']} 格式...")
try:
model_to_export = YOLO(best_model_path)
model_to_export.export(
format=config['export_format'],
imgsz=config['imgsz'],
half=config.get('half_precision', False)
)
exported_file_name = os.path.basename(best_model_path).replace('.pt', f".{config['export_format']}")
exported_file_path = os.path.join(os.path.dirname(best_model_path), exported_file_name)
print(f"✅ 导出成功!文件已保存在: {exported_file_path}")
except Exception as e:
print(f"❌ 导出过程中发生错误: {e}")
elif config.get('run_export', False):
print("\n⏩ 跳过导出步骤,因为未找到有效的模型路径。")
else:
print("\n⏩ 根据配置,跳过导出步骤。")
print("\n🎉 自动化流程执行完毕!")
if __name__ == '__main__':
run_pipeline()