多轮问询优化

This commit is contained in:
weiweiw 2025-03-03 10:58:46 +08:00
parent 4bc78e36fc
commit 62db786d2b
1 changed files with 55 additions and 26 deletions

View File

@ -201,45 +201,74 @@ def agent():
# 再进行槽位抽取
entities = slot_recognizer.recognize(query)
print(f"意图识别后的label:{predicted_label}, id:{predicted_id},槽位抽取后的实体:{entities},message:{messages}")
#必须槽位缺失检查
status, sk = check_lost(predicted_id, entities)
if status == CheckResult.NEEDS_MORE_ROUNDS:
return jsonify({"code": 10001, "msg": "成功",
"answer": { "miss": sk},
})
#工程名和项目名标准化
print(f"start to check_project_standard_slot")
result, information = check_project_standard_slot(predicted_id, entities)
print(f"end check_project_standard_slot,{result},{information}")
if result == CheckResult.NEEDS_MORE_ROUNDS:
return jsonify({
"code": 10001, "msg": "成功",
"answer": {"miss": information},
})
return jsonify({
"code": 200,"msg": "成功",
"answer": {"int": predicted_id, "label": predicted_label, "probability": predicted_probability, "slot": entities },
})
print(f"第一轮意图识别后的label:{predicted_label}, id:{predicted_id},槽位抽取后的实体:{entities},message:{messages}")
# 如果是后续轮次(多轮对话),这里只做示例,可能需要根据具体需求进行处理
else:
query = messages[0].content # 使用 Message 对象的 .content 属性
# 先进行意图识别
predicted_label, predicted_probability, predicted_id = intent_recognizer.predict(query)
entities = multi_slot_recognizer(predicted_id, messages)
print(f"多轮意图识别后的label:{predicted_label}, id:{predicted_id},槽位抽取后的实体:{entities},message:{messages}")
#必须槽位缺失检查
status, sk = check_lost(predicted_id, entities)
if status == CheckResult.NEEDS_MORE_ROUNDS:
return jsonify({"code": 10001, "msg": "成功",
"answer": { "miss": sk},
})
#工程名和项目名标准化
print(f"start to check_project_standard_slot")
result, information = check_project_standard_slot(predicted_id, entities)
print(f"end check_project_standard_slot,{result},{information}")
if result == CheckResult.NEEDS_MORE_ROUNDS:
return jsonify({
"user_id": user_id,
"query": query,
"message_count": len(messages)
"code": 10001, "msg": "成功",
"answer": {"miss": information},
})
return jsonify({
"code": 200,"msg": "成功",
"answer": {"int": predicted_id, "label": predicted_label, "probability": predicted_probability, "slot": entities },
})
except ValidationError as e:
return jsonify({"error": e.errors()}), 400 # 捕捉 Pydantic 错误并返回
except Exception as e:
return jsonify({"error": str(e)}), 500 # 捕捉其他错误并返回
def multi_slot_recognizer(intention_id, messages):
from openai import OpenAI
final_slot = {}
api_base_url = "http://36.33.26.201:27861/v1"
api_key = 'EMPTY'
model_name = 'qwen2.5-instruct'
client = OpenAI(base_url = api_base_url, api_key = api_key)
prompt = f'''
根据用户的输入{messages}抽取出用户想了解的问题要求保持客观真实简单明了不要多余解释和阐述
'''
message = [{"role": "system", "content": prompt}]
message.extend(messages)
# print(message)
response = client.chat.completions.create(
messages=message,
model=model_name,
max_tokens=1000,
temperature=0.001,
stream=False
)
res = response.choices[0].message.content
print(f"多轮意图后用户想要的问题是{res}")
entries = slot_recognizer.recognize(res)
return entries
def check_lost(int_res, slot):
#labels: ["天气查询","互联网查询","页面切换","日计划数量查询","周计划数量查询","日计划作业内容","周计划作业内容","施工人数","作业考勤人数","知识问答"]
mapping = {