diff --git a/api/main.py b/api/main.py index bda9a33..b03a0dd 100644 --- a/api/main.py +++ b/api/main.py @@ -13,7 +13,7 @@ from constants import PROJECT_NAME, PROJECT_DEPARTMENT, SIMILARITY_VALUE from config import * # 常量 MODEL_ERNIE_PATH = R"E:\workingSpace\PycharmProjects\Intention_dev\ernie\output\checkpoint-4160" -MODEL_UIE_PATH = R"E:\workingSpace\PycharmProjects\Intention_dev\uie\output\checkpoint-1740" +MODEL_UIE_PATH = R"E:\workingSpace\PycharmProjects\Intention_dev\uie\output\checkpoint-2430" # 类别名称列表 labels = [ @@ -24,17 +24,19 @@ labels = [ # 标签映射 label_map = { 0: 'O', # 非实体 - 1: 'B-date', 12: 'I-date', - 2: 'B-project_name', 13: 'I-project_name', - 3: 'B-project_type', 14: 'I-project_type', - 4: 'B-construction_unit', 15: 'I-construction_unit', - 5: 'B-implementation_organization', 16: 'I-implementation_organization', - 6: 'B-project_department', 17: 'I-project_department', - 7: 'B-project_manager', 18: 'I-project_manager', - 8: 'B-subcontractor', 19: 'I-subcontractor', - 9: 'B-team_leader', 20: 'I-team_leader', - 10: 'B-risk_level', 21: 'I-risk_level', - 11: 'B-page', 22: 'I-page', + 1: 'B-date', 14: 'I-date', + 2: 'B-projectName', 15: 'I-projectName', + 3: 'B-projectType', 16: 'I-projectType', + 4: 'B-constructionUnit', 17: 'I-constructionUnit', + 5: 'B-implementationOrganization', 18: 'I-implementationOrganization', + 6: 'B-projectDepartment', 19: 'I-projectDepartment', + 7: 'B-projectManager', 20: 'I-projectManager', + 8: 'B-subcontractor', 21: 'I-subcontractor', + 9: 'B-teamLeader', 22: 'I-teamLeader', + 10: 'B-riskLevel', 23: 'I-riskLevel', + 11: 'B-page', 24: 'I-page', + 12: 'B-operating', 25: 'I-operating', + 13: 'B-teamName', 26: 'I-teamName', } # 初始化工具类 diff --git a/ernie/1.py b/ernie/1.py new file mode 100644 index 0000000..de14d5c --- /dev/null +++ b/ernie/1.py @@ -0,0 +1,16 @@ +import pandas as pd +import json + +# 读取 Excel 文件 +excel_file = r"D:\bonus\Desktop\问题.xlsx" +df = pd.read_excel(excel_file) + +# 只保留 text 和 prompt,并转换格式 +json_data = [{"text": row["问题"], "label": "知识问答"} for _, row in df.iterrows()] + +# 保存为 JSON 文件 +json_file = "知识问答.json" +with open(json_file, "w", encoding="utf-8") as f: + json.dump(json_data, f, ensure_ascii=False, indent=4) + +print(f"Excel 数据已转换为 JSON 并保存到 {json_file}") diff --git a/ernie/load_model.py b/ernie/load_model.py index 354234e..db5902a 100644 --- a/ernie/load_model.py +++ b/ernie/load_model.py @@ -14,7 +14,7 @@ model = ErnieForSequenceClassification.from_pretrained(R"E:\workingSpace\Pycharm tokenizer = ErnieTokenizer.from_pretrained(R"E:\workingSpace\PycharmProjects\Intention_dev\ernie\output\checkpoint-4160") # 创建输入示例 -text = "胡彬项目经理上一周作业内容是什么?" +text = "宇宙中发现的第一个脉冲星是由谁发现的?" inputs = tokenizer(text, max_length=256, truncation=True, padding='max_length', return_tensors="pd") # 将输入数据转化为 Paddle tensor 格式 @@ -34,3 +34,4 @@ max_prob_value = np.max(probabilities.numpy(), axis=-1) # 获取最大概率值 # 根据预测的标签索引映射到类别名称 predicted_label = labels[max_prob_idx[0]] # 根据索引获取对应的标签 predicted_probability = max_prob_value[0] # 获取最大概率值 +print(predicted_label, predicted_probability) \ No newline at end of file diff --git a/ernie/从 text 文件读取并转换为 JSON.py b/ernie/从 text 文件读取并转换为 JSON.py index 81ef38a..db663f1 100644 --- a/ernie/从 text 文件读取并转换为 JSON.py +++ b/ernie/从 text 文件读取并转换为 JSON.py @@ -1,7 +1,7 @@ import json # 读取 text 文件 -with open("data/test.txt", "r", encoding="utf-8") as f: +with open("data/train.txt", "r", encoding="utf-8") as f: data = f.readlines() # 按行读取 # 解析数据 @@ -17,8 +17,7 @@ for line in data: json_output = json.dumps(json_list, ensure_ascii=False, indent=4) # 保存到 JSON 文件 -with open("data/test.json", "w", encoding="utf-8") as f: +with open("data1/train.json", "w", encoding="utf-8") as f: f.write(json_output) - # 打印 JSON 结果 print(json_output) diff --git a/generated_data/data/互联网查询.json b/generated_data/data/互联网查询.json new file mode 100644 index 0000000..cbaba20 --- /dev/null +++ b/generated_data/data/互联网查询.json @@ -0,0 +1,282 @@ +[ + { + "text": "当前俄罗斯与乌克兰的局势如何?", + "label": "互联网查询" + }, + { + "text": "最近中国经济增长的最新数据是什么?", + "label": "互联网查询" + }, + { + "text": "中国和欧盟的贸易关系目前怎么样?", + "label": "互联网查询" + }, + { + "text": "美国总统大选的最新动态是什么?", + "label": "互联网查询" + }, + { + "text": "最近中东局势有没有新的变化?", + "label": "互联网查询" + }, + { + "text": "当前全球通胀情况如何?", + "label": "互联网查询" + }, + { + "text": "最近联合国有什么重要决议?", + "label": "互联网查询" + }, + { + "text": "中印边境局势最近有什么新进展?", + "label": "互联网查询" + }, + { + "text": "全球气候变化会议有哪些新的决策?", + "label": "互联网查询" + }, + { + "text": "当前中国房产市场的最新趋势是什么?", + "label": "互联网查询" + }, + { + "text": "最近中国对台政策有何新动向?", + "label": "互联网查询" + }, + { + "text": "北约最近有哪些重要的军事动态?", + "label": "互联网查询" + }, + { + "text": "中国最近在科技领域有哪些突破?", + "label": "互联网查询" + }, + { + "text": "全球供应链危机目前的状况如何?", + "label": "互联网查询" + }, + { + "text": "中国最近有哪些新的外交举措?", + "label": "互联网查询" + }, + { + "text": "最近美日韩三国的关系如何?", + "label": "互联网查询" + }, + { + "text": "当前中国对新能源汽车的政策是什么?", + "label": "互联网查询" + }, + { + "text": "全球能源价格目前的走势如何?", + "label": "互联网查询" + }, + { + "text": "中国在人工智能领域的最新进展是什么?", + "label": "互联网查询" + }, + { + "text": "东南亚局势最近有没有新的变化?", + "label": "互联网查询" + }, + { + "text": "当前全球移民政策的最新动向是什么?", + "label": "互联网查询" + }, + { + "text": "日本近期的经济政策有哪些变化?", + "label": "互联网查询" + }, + { + "text": "中国最新的军事实力发展情况如何?", + "label": "互联网查询" + }, + { + "text": "目前全球粮食安全形势如何?", + "label": "互联网查询" + }, + { + "text": "中国政府近期对房地产行业有哪些新规?", + "label": "互联网查询" + }, + { + "text": "当前国际原油价格走势如何?", + "label": "互联网查询" + }, + { + "text": "最近中美科技竞争的最新动态是什么?", + "label": "互联网查询" + }, + { + "text": "中国最近有哪些重大基建项目开工?", + "label": "互联网查询" + }, + { + "text": "当前非洲国家的经济发展趋势如何?", + "label": "互联网查询" + }, + { + "text": "最近中国在太空探索方面有哪些新进展?", + "label": "互联网查询" + }, + { + "text": "关于百度的最新新闻是什么?", + "label": "互联网查询" + }, + { + "text": "关于美国加州大火的最新消息是什么?", + "label": "互联网查询" + }, + { + "text": "关于人工智能的最新发展是什么?", + "label": "互联网查询" + }, + { + "text": "最新的北京教育政策变化是什么", + "label": "互联网查询" + }, + { + "text": "最新的北京旅游景点推荐。", + "label": "互联网查询" + }, + { + "text": "最新的NBA比赛结果在哪里可以查看?", + "label": "互联网查询" + }, + { + "text": "2025年最新的科技新闻。", + "label": "互联网查询" + }, + { + "text": "2025年最新的股票市场行情是什么", + "label": "互联网查询" + }, + { + "text": "量子计算取得突破性进展是什么", + "label": "互联网查询" + }, + { + "text": "人工智能国内的最新进展是什么", + "label": "互联网查询" + }, + { + "text": "中国机器人最好的厂家有哪些", + "label": "互联网查询" + }, + { + "text": "截止目前世界最富有的国家是哪一个", + "label": "互联网查询" + }, + { + "text": "现在中非关系怎么样", + "label": "互联网查询" + }, + { + "text": "现在世界格局是怎样的", + "label": "互联网查询" + }, + { + "text": "现在中美关系的怎么样", + "label": "互联网查询" + }, + { + "text": "现在欧盟有哪些国家", + "label": "互联网查询" + }, + { + "text": "现在中国的世界关系是怎样的", + "label": "互联网查询" + }, + { + "text": "哪吒闹海这个电影的放映时间是什么", + "label": "互联网查询" + }, + { + "text": "李晨这个明星的最新动态是什么", + "label": "互联网查询" + }, + { + "text": "当前俄乌冲突的最新进展如何?", + "label": "互联网查询" + }, + { + "text": "巴以冲突的现状如何?", + "label": "互联网查询" + }, + { + "text": "全球经济形势目前如何?", + "label": "互联网查询" + }, + { + "text": "美国对华最新政策有哪些变化?", + "label": "互联网查询" + }, + { + "text": "中国经济增长率最新数据是多少?", + "label": "互联网查询" + }, + { + "text": "近期有哪些重要的国际峰会?", + "label": "互联网查询" + }, + { + "text": "中国和欧盟的关系如何?", + "label": "互联网查询" + }, + { + "text": "当前中东局势如何发展?", + "label": "互联网查询" + }, + { + "text": "美国大选的最新动态是什么?", + "label": "互联网查询" + }, + { + "text": "中国在人工智能领域有哪些最新进展?", + "label": "互联网查询" + }, + { + "text": "中国和东盟国家的合作现状如何?", + "label": "互联网查询" + }, + { + "text": "全球气候变化的最新趋势是什么?", + "label": "互联网查询" + }, + { + "text": "当前全球通胀水平如何?", + "label": "互联网查询" + }, + { + "text": "北约近期有哪些新动态?", + "label": "互联网查询" + }, + { + "text": "中国与非洲国家的最新合作进展如何?", + "label": "互联网查询" + }, + { + "text": "世界能源市场当前状况如何?", + "label": "互联网查询" + }, + { + "text": "中日韩关系近期有哪些变化?", + "label": "互联网查询" + }, + { + "text": "当前全球供应链的恢复情况如何?", + "label": "互联网查询" + }, + { + "text": "最近的国际热点事件有哪些?", + "label": "互联网查询" + }, + { + "text": "中国在国际事务中的影响力如何变化?", + "label": "互联网查询" + }, + { + "text": "最近的新闻有那些说一下?", + "label": "互联网查询" + } +] \ No newline at end of file diff --git a/generated_data/data/天气查询.json b/generated_data/data/天气查询.json new file mode 100644 index 0000000..1447d05 --- /dev/null +++ b/generated_data/data/天气查询.json @@ -0,0 +1,266 @@ +[ + { + "text": "今天下午亳州的降水量大概有多少?", + "label": "天气查询" + }, + { + "text": "明天上午池州的天气预报是否有雨?", + "label": "天气查询" + }, + { + "text": "今天晚上宣城的降雨量预计有多少?", + "label": "天气查询" + }, + { + "text": "今天傍晚合肥的天气预报显示会有雷阵雨吗?", + "label": "天气查询" + }, + { + "text": "明天铜陵的天气适合登山吗?", + "label": "天气查询" + }, + { + "text": "宿州明天的气温区间是多少?", + "label": "天气查询" + }, + { + "text": "今天南京的天气怎么样?", + "label": "天气查询" + }, + { + "text": "明天蚌埠的天气是否有明显变化?", + "label": "天气查询" + }, + { + "text": "未来三天淮南的降水频率是多少?", + "label": "天气查询" + }, + { + "text": "合肥本周的最高气温是多少?", + "label": "天气查询" + }, + { + "text": "明天芜湖会刮风吗?", + "label": "天气查询" + }, + { + "text": "未来一周内阜阳的空气质量会改善吗?", + "label": "天气查询" + }, + { + "text": "本周五亳州的天气会有强风吗?", + "label": "天气查询" + }, + { + "text": "未来三天巢湖的天气预报是什么?", + "label": "天气查询" + }, + { + "text": "六安本周的降水量预计是多少?", + "label": "天气查询" + }, + { + "text": "合肥今天体感温度是多少?", + "label": "天气查询" + }, + { + "text": "今天合肥的天气怎么样?", + "label": "天气查询" + }, + { + "text": "本周安庆的湿度会达到多少?", + "label": "天气查询" + }, + { + "text": "明天合肥会有雨吗?", + "label": "天气查询" + }, + { + "text": "明天巢湖的日照强度预计如何?", + "label": "天气查询" + }, + { + "text": "明天宿州的天气是否适合进行户外露营?", + "label": "天气查询" + }, + { + "text": "本周滁州的天气适合出行吗?", + "label": "天气查询" + }, + { + "text": "明天宿州的天气会转晴吗?", + "label": "天气查询" + }, + { + "text": "本周蚌埠的降雨概率有多大?", + "label": "天气查询" + }, + { + "text": "合肥明天早上的风速大约是多少?", + "label": "天气查询" + }, + { + "text": "本周芜湖的阳光时长有多少?", + "label": "天气查询" + }, + { + "text": "明天安庆的天气怎样", + "label": "天气查询" + }, + { + "text": "本周六黄山的天气如何?", + "label": "天气查询" + }, + { + "text": "明天阜阳的能见度如何?", + "label": "天气查询" + }, + { + "text": "宿州明天的平均气温是多少?", + "label": "天气查询" + }, + { + "text": "今天池州的体感温度会很低吗?", + "label": "天气查询" + }, + { + "text": "未来两天芜湖的最高气温是多少?", + "label": "天气查询" + }, + { + "text": "明天宣城的气温相比今天会升高吗?", + "label": "天气查询" + }, + { + "text": "今天淮南的最高气温是多少?", + "label": "天气查询" + }, + { + "text": "本周合肥会有降雨吗?", + "label": "天气查询" + }, + { + "text": "今晚铜陵会出现大风天气吗?", + "label": "天气查询" + }, + { + "text": "今天晚上阜阳有可能出现冰雹吗?", + "label": "天气查询" + }, + { + "text": "2025年清明节巢湖的天气如何?", + "label": "天气查询" + }, + { + "text": "今天下午安庆有可能出现强降雨吗?", + "label": "天气查询" + }, + { + "text": "今晚滁州的最低气温是多少?", + "label": "天气查询" + }, + { + "text": "明天马鞍山的空气质量指数是多少?", + "label": "天气查询" + }, + { + "text": "今天黄山的山顶温度会低于零度吗?", + "label": "天气查询" + }, + { + "text": "本周五晚上阜阳的气温预计最低会降到多少度?", + "label": "天气查询" + }, + { + "text": "未来一周内蚌埠的天气如何?", + "label": "天气查询" + }, + { + "text": "今天下午马鞍山的空气质量如何?", + "label": "天气查询" + }, + { + "text": "今天晚上滁州有雷雨吗?", + "label": "天气查询" + }, + { + "text": "明天滁州的气温相比今天是否更高?", + "label": "天气查询" + }, + { + "text": "今天晚上宿州的温度会低于10°C吗?", + "label": "天气查询" + }, + { + "text": "淮北明天的紫外线指数高吗?", + "label": "天气查询" + }, + { + "text": "本周蚌埠的气温最低会达到多少?", + "label": "天气查询" + }, + { + "text": "本周合肥的天气怎么样?", + "label": "天气查询" + }, + { + "text": "2025年春节前合肥最低气温多少?", + "label": "天气查询" + }, + { + "text": "今天下午巢湖的空气湿度是多少?", + "label": "天气查询" + }, + { + "text": "接下来一个月亳州的天气是什么样的", + "label": "天气查询" + }, + { + "text": "明天六安会出现霜冻现象吗?", + "label": "天气查询" + }, + { + "text": "六安今天中午会下小雨吗?", + "label": "天气查询" + }, + { + "text": "本周合肥的风向主要是什么?", + "label": "天气查询" + }, + { + "text": "本周安庆的最低气温预计出现在哪一天?", + "label": "天气查询" + }, + { + "text": "本周黄山的气温波动大吗?", + "label": "天气查询" + }, + { + "text": "今天晚上合肥的风力会达到几级?", + "label": "天气查询" + }, + { + "text": "本周五安庆的天气适合户外活动吗?", + "label": "天气查询" + }, + { + "text": "本周合肥的最低气温预计出现在哪一天?", + "label": "天气查询" + }, + { + "text": "今天晚上铜陵会出现大雾天气吗?", + "label": "天气查询" + }, + { + "text": "淮北明天的体感温度是否较高?", + "label": "天气查询" + }, + { + "text": "本周亳州的气温是否一直偏低?", + "label": "天气查询" + }, + { + "text": "明天安徽省宿州市的日出和日落时间分别是什么时候?", + "label": "天气查询" + } +] \ No newline at end of file diff --git a/generated_data/data/知识问答.json b/generated_data/data/知识问答.json new file mode 100644 index 0000000..e5efd05 --- /dev/null +++ b/generated_data/data/知识问答.json @@ -0,0 +1,3786 @@ +[ + { + "text": "电力线路作业时,为防止感应电伤人,应采取什么措施?", + "label": "知识问答" + }, + { + "text": "在变电站进行高压试验时,为确保人员安全,试验人员应穿戴何种防护装备?", + "label": "知识问答" + }, + { + "text": "电气设备发生火灾时,应使用哪种类型的灭火器进行灭火?", + "label": "知识问答" + }, + { + "text": "在变电站内进行检修作业时,为防止误操作,应如何正确使用接地线?", + "label": "知识问答" + }, + { + "text": "进行带电作业时,作业人员应穿戴什么类型的工作服?", + "label": "知识问答" + }, + { + "text": "变电站内,当需要进入SF6电气设备室时,应采取哪些安全措施?", + "label": "知识问答" + }, + { + "text": "在进行电力线路巡视时,当发现导线断落在地面时,应如何处理?", + "label": "知识问答" + }, + { + "text": "在变电站内进行工作时,为防止触电,应如何正确使用绝缘垫?", + "label": "知识问答" + }, + { + "text": "当进行电气设备的高压试验时,应遵循的安全操作规程是什么?", + "label": "知识问答" + }, + { + "text": "在变电站进行检修作业时,应如何正确设置安全警示标志?", + "label": "知识问答" + }, + { + "text": "混凝土用水在施工过程中应满足哪些基本要求?", + "label": "知识问答" + }, + { + "text": "混凝土用水中氯离子含量的限制标准是什么?", + "label": "知识问答" + }, + { + "text": "如何检测混凝土用水中的有害物质?", + "label": "知识问答" + }, + { + "text": "饮用水是否可以直接用于混凝土的搅拌和养护?", + "label": "知识问答" + }, + { + "text": "混凝土用水的pH值应在什么范围内?", + "label": "知识问答" + }, + { + "text": "在使用工业废水作为混凝土用水时,需要进行哪些处理?", + "label": "知识问答" + }, + { + "text": "不同类型的混凝土对用水的要求是否相同?", + "label": "知识问答" + }, + { + "text": "混凝土用水中的硫酸盐含量对混凝土性能有何影响?", + "label": "知识问答" + }, + { + "text": "混凝土用水的温度对混凝土的施工和质量有何影响?", + "label": "知识问答" + }, + { + "text": "对于特殊环境下的混凝土工程,对用水有何特殊要求?", + "label": "知识问答" + }, + { + "text": "架线工程开工前,针对实际使用的导线、液压管和配套的液压机及压接钢模,应如何制作检验性试件?", + "label": "知识问答" + }, + { + "text": "按照GB/T 2317.1的要求进行握力试验时,检验性试件的握着力应达到什么标准?", + "label": "知识问答" + }, + { + "text": "如果有一根试件的握力值未达到规定标准,应该如何处理?", + "label": "知识问答" + }, + { + "text": "同一工程中,各施工标段所使用的导线接续管、耐张线夹、引流线夹、液压设备、钢模相同或不同,进行试验时有何具体要求?", + "label": "知识问答" + }, + { + "text": "各种液压管压后对边距尺寸S的允许最大值是多少?", + "label": "知识问答" + }, + { + "text": "若三个对边距中有一个达到了允许最大值,是否需要更换钢模重压?", + "label": "知识问答" + }, + { + "text": "钢管压接后,钢芯应露出钢管端部多少毫米?", + "label": "知识问答" + }, + { + "text": "在压接完成后,如何校核钢锚的凹槽部位是否被铝管压住?", + "label": "知识问答" + }, + { + "text": "在进行接续管钢管的液压操作时,操作顺序是什么?", + "label": "知识问答" + }, + { + "text": "在接续管钢管的液压操作中,液压部位有哪些?", + "label": "知识问答" + }, + { + "text": "架空输电线路通过山区时,设计风速是否需要调整?调整幅度是多少?", + "label": "知识问答" + }, + { + "text": "在架空输电线路的杆塔上,需要设置哪些固定标志来确保运行安全?", + "label": "知识问答" + }, + { + "text": "在架空输电线路设计中,对于一些狭谷、高峰等处,是否需要特别考虑风速值的增大?", + "label": "知识问答" + }, + { + "text": "架空输电线路设计规范中,统计风速样本的基准高度是多少?", + "label": "知识问答" + }, + { + "text": "在进行工程设计时,如何根据导线平均高度将基本风速进行换算?", + "label": "知识问答" + }, + { + "text": "在架空输电线路的杆塔上,固定标志的尺寸、颜色和内容需要满足哪些要求?", + "label": "知识问答" + }, + { + "text": "统计风速样本的基准高度是依据哪个规范确定为离地面(或水面) 10m的?", + "label": "知识问答" + }, + { + "text": "山区风速较平地增大10%之后,是否已经充分考虑了狭管效应对架 空输电线路的影响?", + "label": "知识问答" + }, + { + "text": "在进行工程设计时,如何根据导线平均高度将基本风速进行换算?", + "label": "知识问答" + }, + { + "text": "架空输电线路经过山区时,设计风速应如何确定?", + "label": "知识问答" + }, + { + "text": "根据JGJ18-2012《钢筋焊接及验收规程》,电弧焊接时,焊接接头的外观检查应包括哪些内容?", + "label": "知识问答" + }, + { + "text": "JGJ18-2012《钢筋焊接及验收规程》中,对于钢筋焊接接头或焊接制品的质量验收,施工单位需要完成哪些步骤?", + "label": "知识问答" + }, + { + "text": "JGJ18-2012《钢筋焊接及验收规程》中,对钢筋焊接接头或焊接制品的复验有何要求?", + "label": "知识问答" + }, + { + "text": "根据JGJ18-2012《钢筋焊接及验收规程》,钢筋焊接接头的力学性能试验中,试件的取样规则是什么?", + "label": "知识问答" + }, + { + "text": "根据JGJ18-2012《钢筋焊接及验收规程》,钢筋闪光对焊接头的外观质量检查中,对弯折角度有何具体要求?", + "label": "知识问答" + }, + { + "text": "在钢筋焊接接头或焊接制品质量验收时,施工单位需要自评合格,之后由谁来进行检查和验收?", + "label": "知识问答" + }, + { + "text": "钢筋焊接骨架和焊接网在进行外观质量检查时,属于同一类型制品的定义是什么?", + "label": "知识问答" + }, + { + "text": "当钢筋焊接接头弯曲试验不合格时,应如何进行复验?", + "label": "知识问答" + }, + { + "text": "在进行钢筋焊接骨架和焊接网的外观质量检查时,如果一周内不足300件的制品,应如何计算检验批的数量?", + "label": "知识问答" + }, + { + "text": "在钢筋焊接骨架和焊接网的外观质量检查中,每批应抽查多少比例的制品进行检查?", + "label": "知识问答" + }, + { + "text": "在有限空间作业前,是否需要进行通风处理?", + "label": "知识问答" + }, + { + "text": "进入有限空间作业时,是否需要设置明显的安全警示标志?", + "label": "知识问答" + }, + { + "text": "在潮湿、有电气设备的有限空间及在潮湿的有限空间内使用电气设备时,作业人员应采取什么措施保护自己?", + "label": "知识问答" + }, + { + "text": "起重作业前,是否需要有专人指挥并明确分工?", + "label": "知识问答" + }, + { + "text": "起重机械使用前,是否需要经过检验检测机构的监督检验,并确保其在有效期内?", + "label": "知识问答" + }, + { + "text": "在特殊环境或特殊吊件等施工作业中,是否需要编制专项施工方案或专项安全技术措施?", + "label": "知识问答" + }, + { + "text": "在高海拔地区施工时,作业人员应定期进行哪些检查并建立什么档案?", + "label": "知识问答" + }, + { + "text": "在高海拔地区施工时,施工现场应配备哪些必要的医疗设备和药品?", + "label": "知识问答" + }, + { + "text": "在地质灾害、气象灾害多发地区施工时,应如何处理与当地有关部门的关系?", + "label": "知识问答" + }, + { + "text": "构支架吊装过程中,吊件离地面约100mm时应采取什么措施?", + "label": "知识问答" + }, + { + "text": "爆破警戒时,选择通信联络工具和方式时需要考虑哪些因素?", + "label": "知识问答" + }, + { + "text": "当遇到盲炮情况时,应遵循哪些具体的安全规程来处理?", + "label": "知识问答" + }, + { + "text": "在爆破开挖过程中,形成台阶需要经历哪些步骤?", + "label": "知识问答" + }, + { + "text": "为什么在台阶形成之前进行爆破时需要加大警戒范围?", + "label": "知识问答" + }, + { + "text": "在孔口岩石比较破碎的情况下,通常会采用什么方法来进行护壁?", + "label": "知识问答" + }, + { + "text": "第一排炮孔的最小抵抗线变化较大时,可能会出现哪些问题?", + "label": "知识问答" + }, + { + "text": "在深孔爆破后,进入爆破区域进行检查前,需要等待哪些条件满足?", + "label": "知识问答" + }, + { + "text": "光面爆破或预裂爆破技术在开挖岩石边坡时,可以带来哪些好处?", + "label": "知识问答" + }, + { + "text": "实施光面爆破或预裂爆破时,钻孔和装药工作需要遵循哪些具体要求?", + "label": "知识问答" + }, + { + "text": "对于非熟练爆破人员,进行光面爆破或预裂爆破操作时,应采取什么措施来确保安全?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具在设计时需要考虑哪些基本参数?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具的设计过程中,如何确保其安全性能?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具在试验阶段需要进行哪些测试?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具的设计应遵循哪些国家标准或行业规范?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具在不同电压等级的线路施工中,其使用要求有何区别?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具的试验报告应包含哪些内容?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具在设计时如何考虑环境因素的影响?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具在使用过程中,如何进行日常维护和保养?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具在遇到特殊地形时,其设计和使用有何特别要求?", + "label": "知识问答" + }, + { + "text": "输电线路施工机具在设计阶段,如何确保其与现有施工设备的兼容性?", + "label": "知识问答" + }, + { + "text": "在处理碳纤维复合材料芯架空导线损伤时,有哪些防护措施需要采取?", + "label": "知识问答" + }, + { + "text": "在使用接续管铝管套入碳纤维复合材料芯架空导线时,有哪些具体步骤需要遵循?", + "label": "知识问答" + }, + { + "text": "断开碳纤维复合材料芯架空导线时,应使用哪种工具,以及切割时有什么特别注意事项?", + "label": "知识问答" + }, + { + "text": "当碳纤维复合材料芯架空导线上的局部轻微磨伤未处理时,应如何进行处理?", + "label": "知识问答" + }, + { + "text": "在一个档距内,碳纤维复合材料芯架空导线上接续管和补修管的数量应如何控制?", + "label": "知识问答" + }, + { + "text": "紧线完毕后,应在多长时间内完成直线塔附件的安装?", + "label": "知识问答" + }, + { + "text": "使用提线器时,对碳纤维复合材料芯架空导线的保护措施有哪些具体要求?", + "label": "知识问答" + }, + { + "text": "当碳纤维复合材料芯架空导线在单个提线器上的包络角超过25°时,应采取什么措施?", + "label": "知识问答" + }, + { + "text": "在调整碳纤维复合材料芯架空导线的弧垂时,为了防止松股,每个滑车上的往返次数应控制在多少次以内?", + "label": "知识问答" + }, + { + "text": "在碳纤维复合材料芯架空导线挂完后,应如何观察弧垂变化,以确保安装附件前无误?", + "label": "知识问答" + }, + { + "text": "混凝土结构子分部工程验收时需要提供哪些文件和记录?", + "label": "知识问答" + }, + { + "text": "本规范修订的主要技术内容有哪些?", + "label": "知识问答" + }, + { + "text": "检验批抽样样本应满足哪些要求?", + "label": "知识问答" + }, + { + "text": "什么是见证检验?", + "label": "知识问答" + }, + { + "text": "什么是结构实体检验?", + "label": "知识问答" + }, + { + "text": "不合格检验批的处理应遵循哪些规定?", + "label": "知识问答" + }, + { + "text": "钢筋保护层厚度检验应遵循什么规定?", + "label": "知识问答" + }, + { + "text": "当混凝土强度被判为不合格时,应采取什么措施?", + "label": "知识问答" + }, + { + "text": "对工厂生产的预制构件,进场时应检查哪些内容?", + "label": "知识问答" + }, + { + "text": "混凝土结构子分部工程施工质量验收合格需要满足哪些条件?", + "label": "知识问答" + }, + { + "text": "导线压接前需要进行哪些准备工作?", + "label": "知识问答" + }, + { + "text": "大截面导线压接时,压接工具的选择依据是什么?", + "label": "知识问答" + }, + { + "text": "导线压接过程中,如何保证压接质量?", + "label": "知识问答" + }, + { + "text": "压接完成后,如何进行质量检验?", + "label": "知识问答" + }, + { + "text": "压接过程中,如何处理导线表面的氧化层?", + "label": "知识问答" + }, + { + "text": "大截面导线压接时,压接顺序应该是怎样的?", + "label": "知识问答" + }, + { + "text": "压接过程中,如何确保导线的受力均匀?", + "label": "知识问答" + }, + { + "text": "导线压接完成后,如何进行连接点的防腐处理?", + "label": "知识问答" + }, + { + "text": "在压接过程中,如果遇到导线损伤,应该如何处理?", + "label": "知识问答" + }, + { + "text": "压接完成后,如何确保连接点的机械强度满足要求?", + "label": "知识问答" + }, + { + "text": "根据安徽送变电工程有限公司质量管理制度,工程技术部的主要职责是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司质量管理制度中,如果发生七级质量事件,将对事故责任单位采取什么措施?", + "label": "知识问答" + }, + { + "text": "如果发生六级及以上质量事件,安徽送变电工程有限公司质量管理制度中规定了怎样的处罚措施?", + "label": "知识问答" + }, + { + "text": "若因工程施工质量问题对公司的声誉造成影响,安徽送变电工程有限公司质量管理制度中是如何规定的?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司质量管理制度中,质量事件考核系数具体是如何定义的?", + "label": "知识问答" + }, + { + "text": "在安徽送变电工程有限公司质量管理制度中,质量事件考核系数的计算基础是什么?", + "label": "知识问答" + }, + { + "text": "如果在质量事件考核期内,某单位连续发生多起不同级别的质量事件,其质量事件考核系数会如何累计计算?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司质量管理制度中,对于质量事件考核系数的计算,是否设有最低下限?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司质量管理制度中,质量事件考核系数是否会影响单位的绩效考核?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司质量管理制度中,对于质量事件考核系数的使用,是否设有例外情况或特殊规定?", + "label": "知识问答" + }, + { + "text": "变电站施工现场的围挡高度应达到多少米?", + "label": "知识问答" + }, + { + "text": "临建区的办公区和生活区面积及房间数量应如何配置?", + "label": "知识问答" + }, + { + "text": "变电站进站道路旁应设置哪些大型标志牌?", + "label": "知识问答" + }, + { + "text": "变电站进站道路旁应设置哪些设施以确保安全?", + "label": "知识问答" + }, + { + "text": "屋顶临边防护设施由哪些部分组成?", + "label": "知识问答" + }, + { + "text": "施工现场的消防设施应采取哪些防雨、防冻措施?", + "label": "知识问答" + }, + { + "text": "构支架堆放时应采取哪些措施以确保安全?", + "label": "知识问答" + }, + { + "text": "变电站母线安装时,软母线导线施放时地面应铺设什么材料?", + "label": "知识问答" + }, + { + "text": "管型母线焊接时作业人员应穿戴哪些个人防护装备?", + "label": "知识问答" + }, + { + "text": "均压环外表应采取何种类型的防护措施?", + "label": "知识问答" + }, + { + "text": "根据JGJ94-2008规范,桩基础设计时需考虑哪两类极限状态?", + "label": "知识问答" + }, + { + "text": "哪些因素决定建筑桩基的设计等级?", + "label": "知识问答" + }, + { + "text": "甲级设计等级适用于哪些类型的建筑?", + "label": "知识问答" + }, + { + "text": "乙级设计等级适用于哪些类型的建筑?", + "label": "知识问答" + }, + { + "text": "丙级设计等级适用于哪些类型的建筑?", + "label": "知识问答" + }, + { + "text": "在计算单桩竖向极限承载力时,主要依靠什么参数?", + "label": "知识问答" + }, + { + "text": "本次修订收集的试桩资料中,预制桩、水下钻孔灌注桩和干作业钻孔灌注桩各有多少? 不需要回答", + "label": "知识问答" + }, + { + "text": "根据JGJ94-2008规范,挤土桩在饱和黏性土中的最小中心距是多少?", + "label": "知识问答" + }, + { + "text": "在计算单桩竖向极限承载力时,规范建议的经验参数来源有哪些?", + "label": "知识问答" + }, + { + "text": "对于嵌岩桩,嵌岩深度的确定需要考虑哪些因素?", + "label": "知识问答" + }, + { + "text": "大件运输过程中,当氮气或干燥空气压力值控制在0.01~0.03Mpa时,其主要目的是什么?", + "label": "知识问答" + }, + { + "text": "在运输变压器时,三维冲击振动仪读数应控制在什么范围内,以确保设备安全?", + "label": "知识问答" + }, + { + "text": "如果建设管理单位或厂家有特殊要求,运输过程中的控制参数应如何执行?", + "label": "知识问答" + }, + { + "text": "在运输途中,项目部需要对哪些方面进行检查,并且需要记录哪些信息?", + "label": "知识问答" + }, + { + "text": "项目部在运输前和运输过程中需要采取哪些措施来做好成品保护?", + "label": "知识问答" + }, + { + "text": "大件运输方案应由哪些部门进行审批流程?", + "label": "知识问答" + }, + { + "text": "针对冬雨季或特殊地形运输,项目部需要采取什么措施?", + "label": "知识问答" + }, + { + "text": "在运输过程中,项目部应如何开展新技术成果的推广和应用?", + "label": "知识问答" + }, + { + "text": "项目部在租赁车辆、设备时,如何进行验收交接工作?", + "label": "知识问答" + }, + { + "text": "在运输过程中,项目部应如何动态管理运输进度计划,并进行调整?", + "label": "知识问答" + }, + { + "text": "依据《安徽送变电工程有限公司电网物资质量管理细则》的通知,物资管理部门在物资采购过程中,需要遵循哪些主要的质量管理步骤?", + "label": "知识问答" + }, + { + "text": "电网物资的质量检验测试通常在哪个阶段进行?其目的是什么?", + "label": "知识问答" + }, + { + "text": "依据通知,哪些电网物资需要进行抽检?请列举几种。", + "label": "知识问答" + }, + { + "text": "电网物资抽检的依据有哪些?请至少列举三种。", + "label": "知识问答" + }, + { + "text": "抽检电网物资的组织工作由谁负责?其主要职责是什么?", + "label": "知识问答" + }, + { + "text": "依据《电网物资质量管理细则》的通知,对于单一来源采购项目,公司需要执行哪些规定?", + "label": "知识问答" + }, + { + "text": "在单一来源采购中,评审小组在处理报价时有哪些具体的要求?", + "label": "知识问答" + }, + { + "text": "对于采用框架协议组织形式的采购,采购文件中需要明确哪些内容?", + "label": "知识问答" + }, + { + "text": "询价和竞争性谈判采购中,哪些情况下的采购结果需要由公司分管领导进行审定?", + "label": "知识问答" + }, + { + "text": "物资采购过程中,需要进行综合评审的情况下,物资管理中心如何抽取评审专家?", + "label": "知识问答" + }, + { + "text": "电网建设项目档案管理的职责分工是如何规定的?", + "label": "知识问答" + }, + { + "text": "建设单位在电网建设项目档案管理中的主要职责是什么?", + "label": "知识问答" + }, + { + "text": "项目文件的归档范围和要求是什么?", + "label": "知识问答" + }, + { + "text": "项目文件归档时,归档单位需要填写哪些表格?", + "label": "知识问答" + }, + { + "text": "项目文件的归档时间是如何规定的?", + "label": "知识问答" + }, + { + "text": "项目建设单位档案管理部门在项目档案管理中的具体职责是什么?", + "label": "知识问答" + }, + { + "text": "项目档案验收不合格时,项目责任单位需要进行哪些整改工作?", + "label": "知识问答" + }, + { + "text": "项目档案在保管时需要遵循哪些原则?", + "label": "知识问答" + }, + { + "text": "项目档案的保管单位如何确定?", + "label": "知识问答" + }, + { + "text": "项目档案保管单位需要采取哪些措施来确保档案的安全和有效利用?", + "label": "知识问答" + }, + { + "text": "《国家电网有限公司业务外包安全监督管理办法》中,外包商在参与业务外包活动前需要满足哪些基本条件?", + "label": "知识问答" + }, + { + "text": "根据该办法,业务外包活动中,发包单位与承包单位签订合同前,需要进行哪些必要的准备工作?", + "label": "知识问答" + }, + { + "text": "文件中提到的“安全协议”具体包含哪些内容?签订安全协议时有哪些注意事项?", + "label": "知识问答" + }, + { + "text": "《国家电网有限公司业务外包安全监督管理办法》中,对于外包商的安全培训有何具体要求?", + "label": "知识问答" + }, + { + "text": "该办法对外包商人员的资格证书有何规定?如何确保这些人员具备相应资质?", + "label": "知识问答" + }, + { + "text": "文件中提到的“安全检查”具体包括哪些方面?如何进行有效的安全检查?", + "label": "知识问答" + }, + { + "text": "根据该办法,如果在业务外包过程中发生安全事故,应采取哪些措施?", + "label": "知识问答" + }, + { + "text": "文件中提到的“外包商评价”具体包含哪些内容?如何进行客观公正的评价?", + "label": "知识问答" + }, + { + "text": "该办法对外包商的不良行为如何处理?有哪些具体的处罚措施?", + "label": "知识问答" + }, + { + "text": "文件中提到的“合同条款”应包含哪些内容?如何确保合同条款的合法性和合理性?", + "label": "知识问答" + }, + { + "text": "作业安全风险评估的步骤和方法是什么?", + "label": "知识问答" + }, + { + "text": "作业安全风险预警级别如何划分?", + "label": "知识问答" + }, + { + "text": "作业计划管理中,作业风险管控的具体要求是什么?", + "label": "知识问答" + }, + { + "text": "在作业开始前,对作业人员进行安全交底的具体内容有哪些?", + "label": "知识问答" + }, + { + "text": "作业安全风险的现场管控措施包括哪些方面?", + "label": "知识问答" + }, + { + "text": "在作业过程中,如何进行风险动态评估和管控?", + "label": "知识问答" + }, + { + "text": "作业安全风险的应急处理措施有哪些?", + "label": "知识问答" + }, + { + "text": "作业现场的安全监护人员应承担哪些职责?", + "label": "知识问答" + }, + { + "text": "如何通过技术措施来降低作业安全风险?", + "label": "知识问答" + }, + { + "text": "作业安全风险评估结果应如何应用到实际工作中?", + "label": "知识问答" + }, + { + "text": "《输变电工程施工分包合同范本(2024版)》中对施工分包单位的选择标准是什么?", + "label": "知识问答" + }, + { + "text": "施工承包合同中未约定分包计划时,是否需要重新签订施工承包补充合同?", + "label": "知识问答" + }, + { + "text": "施工承包补充合同需要提交给哪些部门备案?", + "label": "知识问答" + }, + { + "text": "施工项目部在选择施工分包单位时,是否必须从核心分包队伍名录中选择?", + "label": "知识问答" + }, + { + "text": "施工项目部与施工分包单位签订分包合同后,需要提交哪些资料给监理项目部和业主项目部?", + "label": "知识问答" + }, + { + "text": "施工项目部在分包单位进场时需要进行哪些检查和验证?", + "label": "知识问答" + }, + { + "text": "分包单位的资格验证由哪个部门负责,验证后需要向哪个部门备案?", + "label": "知识问答" + }, + { + "text": "施工项目部在支付分包单位进度款前需要完成哪些步骤?", + "label": "知识问答" + }, + { + "text": "分包合同结算过程中,施工项目经理需要审批哪些文件?", + "label": "知识问答" + }, + { + "text": "施工项目部在申请支付分包单位保留金时,需要说明哪些内容?", + "label": "知识问答" + }, + { + "text": "安全风险视频管控工作的目的是什么?", + "label": "知识问答" + }, + { + "text": "安全施工生产智能调控系统包含哪些终端?", + "label": "知识问答" + }, + { + "text": "信息采集终端的设备类型有哪些?", + "label": "知识问答" + }, + { + "text": "信息采集终端的功能有哪些?", + "label": "知识问答" + }, + { + "text": "信息监督终端的设备类型有哪些?", + "label": "知识问答" + }, + { + "text": "信息监督终端的功能有哪些?", + "label": "知识问答" + }, + { + "text": "“一点一机”配备原则指的是什么?", + "label": "知识问答" + }, + { + "text": "三级及以上风险作业现场如何进行视频管控?", + "label": "知识问答" + }, + { + "text": "各专业部门如何利用系统平台进行应用?", + "label": "知识问答" + }, + { + "text": "安全风险视频管控工作的分级管控原则是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司关于发布施工机具内部租赁单价通知中提到的施工机具内部租赁单价适用于哪些类型的工程项目?", + "label": "知识问答" + }, + { + "text": "施工机具内部租赁单价的具体金额是多少?是否有详细的表格或清单列出?", + "label": "知识问答" + }, + { + "text": "租赁单价是否包括了所有可能产生的费用,如运输费、安装费等?", + "label": "知识问答" + }, + { + "text": "如果施工机具在租赁期间发生损坏或丢失,责任如何划分?", + "label": "知识问答" + }, + { + "text": "通知中提到的租赁单价是否适用于所有施工机具,还是仅针对特定类型的机具?", + "label": "知识问答" + }, + { + "text": "租赁单价是否根据施工机具的使用时间或次数进行调整?", + "label": "知识问答" + }, + { + "text": "在租赁施工机具时,是否需要提供相应的安全操作培训?", + "label": "知识问答" + }, + { + "text": "施工机具的租赁单价是否根据市场情况进行定期调整?", + "label": "知识问答" + }, + { + "text": "租赁施工机具时,是否需要签订正式的租赁协议,协议中应包含哪些条款?", + "label": "知识问答" + }, + { + "text": "如果施工机具在租赁期内需要维修,维修费用由谁承担?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司的课程体系建设管理办法中,自主开发类课程编写依据是什么?", + "label": "知识问答" + }, + { + "text": "实训项目工位编号命名样式中,各部分分别代表什么含义?", + "label": "知识问答" + }, + { + "text": "公司培训中心在培训师管理中具体承担哪些职责?", + "label": "知识问答" + }, + { + "text": "在课程编写过程中,如果开发任务由多人完成,主编和参编人员的责任如何分配?", + "label": "知识问答" + }, + { + "text": "公司课程体系建设管理办法中,自主开发类课程的编写依据是什么?", + "label": "知识问答" + }, + { + "text": "在课程体系建设中,如何对培训师进行考核?考核周期是多久?", + "label": "知识问答" + }, + { + "text": "在课程体系建设中,外部引进课程如何进行入库申请?", + "label": "知识问答" + }, + { + "text": "课程审核过程是否需要经过评审专家的中间审核?这一环节如何进行?", + "label": "知识问答" + }, + { + "text": "课程审核的最终决定权归谁?审核结论有哪些可能的结果?", + "label": "知识问答" + }, + { + "text": "课程审核结论分为哪几种情况,分别表示什么意思?", + "label": "知识问答" + }, + { + "text": "国网基建部在基建技术管理中的主要职责是什么?", + "label": "知识问答" + }, + { + "text": "国网交流建设部和直流建设部在特高压工程中的技术管理职责是什么?", + "label": "知识问答" + }, + { + "text": "省公司级单位基建管理部门在基建技术管理中的职责是什么?", + "label": "知识问答" + }, + { + "text": "地市供电企业建设部和县供电企业发展建设部在基建技术管理中的职责是什么?", + "label": "知识问答" + }, + { + "text": "设计管理包括哪些具体内容?", + "label": "知识问答" + }, + { + "text": "设计策划工作在什么时候开展,其主要目的是什么?", + "label": "知识问答" + }, + { + "text": "对于输变电工程设计质量控制技术问题清单,公司是如何管理的?", + "label": "知识问答" + }, + { + "text": "设计质量评价工作覆盖哪些阶段,评价结果如何应用?", + "label": "知识问答" + }, + { + "text": "设计竞赛一般采用什么方式开展,对获奖单位有何奖励?", + "label": "知识问答" + }, + { + "text": "工程设计承包商资信评价工作主要评价哪些方面?", + "label": "知识问答" + }, + { + "text": "根据《现场安全督查工作手册》,项目部在施工过程中应如何进行施工风险识别与评估?", + "label": "知识问答" + }, + { + "text": "《现场安全督查工作手册》中提到的“施工三级自检制度”具体包含哪些内容?", + "label": "知识问答" + }, + { + "text": "在施工过程中,施工项目部需要如何监督专业分包单位的施工质量?", + "label": "知识问答" + }, + { + "text": "项目部应如何制定并执行工程安全隐患排查治理工作计划?", + "label": "知识问答" + }, + { + "text": "《现场安全督查工作手册》中对施工过程中现场安全文明施工设施的使用有何具体要求?", + "label": "知识问答" + }, + { + "text": "项目部在施工过程中,如何进行安全文明施工设施的入场报验?", + "label": "知识问答" + }, + { + "text": "《现场安全督查工作手册》中规定,项目部应如何组织和实施现场应急救援知识培训和演练?", + "label": "知识问答" + }, + { + "text": "项目部在施工过程中如何动态管理进度计划,并进行纠偏?", + "label": "知识问答" + }, + { + "text": "项目部在施工过程中,如何进行现场签证的申请和审批?", + "label": "知识问答" + }, + { + "text": "《现场安全督查工作手册》中对工程事故的即时报告制度有何具体规定?", + "label": "知识问答" + }, + { + "text": "作业层班组标准化建设手册(2021版)适用的作业层班组具体包括哪些类型?", + "label": "知识问答" + }, + { + "text": "在作业层班组标准化建设手册(2021版)中,对于班组成员的培训和技能提升有哪些具体要求?", + "label": "知识问答" + }, + { + "text": "作业层班组标准化建设手册(2021版)中提到的“班组标准化建设”具体指的是?", + "label": "知识问答" + }, + { + "text": "标准化手册中对作业层班组的考核和评价机制是如何设计的?", + "label": "知识问答" + }, + { + "text": "在作业层班组标准化建设中,如何确保施工过程的安全性?", + "label": "知识问答" + }, + { + "text": "标准化手册中对于作业层班组的应急处理和事故预防有哪些具体措施?", + "label": "知识问答" + }, + { + "text": "作业层班组标准化建设手册中,对施工现场的环境保护有哪些具体要求?", + "label": "知识问答" + }, + { + "text": "作业层班组标准化建设中,如何进行有效的风险评估?", + "label": "知识问答" + }, + { + "text": "施工现场的作业层班组建设应遵循哪些基本原则?", + "label": "知识问答" + }, + { + "text": "作业层班组标准化建设手册中,如何通过信息化手段提升班组管理效率?", + "label": "知识问答" + }, + { + "text": "巡检站选址应遵循哪些基本原则?", + "label": "知识问答" + }, + { + "text": "巡检站的建设周期一般为多少时间?", + "label": "知识问答" + }, + { + "text": "巡检站的建设资金来源有哪些?", + "label": "知识问答" + }, + { + "text": "巡检站的日常维护工作由谁负责?", + "label": "知识问答" + }, + { + "text": "巡检站的建设标准是什么?", + "label": "知识问答" + }, + { + "text": "巡检站应配备哪些基本设施?", + "label": "知识问答" + }, + { + "text": "巡检站的建设审批流程是怎样的?", + "label": "知识问答" + }, + { + "text": "巡检站的运行管理由哪个部门负责?", + "label": "知识问答" + }, + { + "text": "巡检站的建设进度如何监督?", + "label": "知识问答" + }, + { + "text": "巡检站的建设过程中遇到问题如何处理?", + "label": "知识问答" + }, + { + "text": "在进行钻孔灌注桩施工时,未埋设钢护筒或钢护筒埋深小于1米,存在哪些安全隐患?", + "label": "知识问答" + }, + { + "text": "在互感器二次回路上工作时,如果短路电流互感器二次绕组时短路片或短路线连接不牢固,或者用导线缠绕,会带来什么风险?", + "label": "知识问答" + }, + { + "text": "在带电的电压互感器二次回路上工作时,工器具的金属部分未做绝缘防护措施,会引发哪些安全问题?", + "label": "知识问答" + }, + { + "text": "在有限空间作业时,未执行“先通风、再检测、后作业”的要求,可能导致哪些后果?", + "label": "知识问答" + }, + { + "text": "在有限空间作业时,未正确设置监护人,或者监护人擅离职守,会有哪些安全隐患?", + "label": "知识问答" + }, + { + "text": "在有限空间作业时,未配备或未正确使用安全防护装备、应急救援装备,会带来哪些风险?", + "label": "知识问答" + }, + { + "text": "在使用达到报废标准或超出检验期的安全工器具时,有哪些具体表现形式?", + "label": "知识问答" + }, + { + "text": "在有限空间作业前未进行气体检测或检测浓度高于规定要求,会带来哪些安全风险?", + "label": "知识问答" + }, + { + "text": "在高处作业时,未搭设脚手架、使用高空作业车、升降平台或其他防止坠落措施,存在哪些安全隐患?", + "label": "知识问答" + }, + { + "text": "在进行需要拆除全部或部分接地线后才能进行的作业时,未征得运维人员许可擅自作业,可能会导致什么后果?", + "label": "知识问答" + }, + { + "text": "安徽送变电物资管理中心在物资供应商评价管理中的主要职责是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电办公室(党委办公室)在供应商评价管理中的职责是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电纪委办公室(合规审计部)在供应商评价管理中的职责是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电分公司在供应商评价管理中的具体职责有哪些?", + "label": "知识问答" + }, + { + "text": "安徽送变电项目部、运检站在供应商评价管理中的职责是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电物资供应商评价包含哪些方面?", + "label": "知识问答" + }, + { + "text": "安徽送变电在物资采购活动中,如何应用阶段综评结果?", + "label": "知识问答" + }, + { + "text": "安徽送变电分公司级物资供应商“分级评议”工作由哪个部门牵头?", + "label": "知识问答" + }, + { + "text": "安徽送变电物资供应商在项目现场供应过程中的管理与评价由哪些部门进行?", + "label": "知识问答" + }, + { + "text": "安徽送变电物资供应商评价管理细则由哪个部门负责组织编制和修订?", + "label": "知识问答" + }, + { + "text": "进入施工现场的哪些人员需要纳入实名制管理范畴?", + "label": "知识问答" + }, + { + "text": "施工业务作业人员实名制信息包含哪些内容?", + "label": "知识问答" + }, + { + "text": "已录入公司信息系统中的施工业务作业人员,如果1年及以上无考勤记录或数据更新,其实名制信息会如何处理?", + "label": "知识问答" + }, + { + "text": "施工分公司或外包商在需要重新入场时,需要做哪些工作?", + "label": "知识问答" + }, + { + "text": "施工分公司或外包商在录入作业人员实名制信息时,应在何时完成?", + "label": "知识问答" + }, + { + "text": "实名制信息录入的过程中,外包商或自有班组需要提供哪些文件或信息?", + "label": "知识问答" + }, + { + "text": "施工业务作业人员的实名制信息更新频率是多少?", + "label": "知识问答" + }, + { + "text": "如果作业人员信息发生变化,如何更新实名制信息?", + "label": "知识问答" + }, + { + "text": "实名制信息失效后,后续如何重新录入信息?", + "label": "知识问答" + }, + { + "text": "作业人员实名制管理是否适用于所有进入施工现场的人员,包括管理人员和综合保障人员?", + "label": "知识问答" + }, + { + "text": "抢修应急预案适用于哪些情况和哪些人员?", + "label": "知识问答" + }, + { + "text": "发布预警后,应启动哪些应急措施?", + "label": "知识问答" + }, + { + "text": "报告内容、方式、程序和时限是如何规定的?", + "label": "知识问答" + }, + { + "text": "应急队伍的职责和任务是什么?", + "label": "知识问答" + }, + { + "text": "应急物资与装备的管理、维护和保养有哪些具体要求?", + "label": "知识问答" + }, + { + "text": "对于因玩忽职守、贻误时机造成严重后果的行为,将如何处理?", + "label": "知识问答" + }, + { + "text": "应急预案修订的频率是多少?", + "label": "知识问答" + }, + { + "text": "在什么情况下需要修订应急预案?", + "label": "知识问答" + }, + { + "text": "应急预案由哪个部门制定和负责解释?", + "label": "知识问答" + }, + { + "text": "应急预案从何时开始生效?", + "label": "知识问答" + }, + { + "text": "《安徽送变电工程有限公司服务类项目采购管理细则》修订的依据是什么?", + "label": "知识问答" + }, + { + "text": "服务类项目采购管理细则适用于哪些单位和部门?", + "label": "知识问答" + }, + { + "text": "服务类项目采购申请需要提交哪些内容?", + "label": "知识问答" + }, + { + "text": "服务供应商资格审查主要通过哪些途径进行?", + "label": "知识问答" + }, + { + "text": "询价采购方式下,如果应答人不足3家或应答报价全部超出最高限价,应如何处理?", + "label": "知识问答" + }, + { + "text": "在竞争性谈判采购方式下,评审小组可以要求应答人进行多轮报价吗?", + "label": "知识问答" + }, + { + "text": "单一来源采购方式下,评审小组要求应答人进行多轮报价时,最后一轮报价前应告知应答人什么信息?", + "label": "知识问答" + }, + { + "text": "年度框架采购方式适用于哪些类型的服务类项目?", + "label": "知识问答" + }, + { + "text": "采购申请审批完成后,由哪个部门负责组织实施采购活动?", + "label": "知识问答" + }, + { + "text": "原《安徽送变电工程有限公司服务类项目采购活动实施规范》何时废止?", + "label": "知识问答" + }, + { + "text": "施工、运维一线的地方性材料、零星材料、小型工器具和生活用品等的采购权限是如何规定的?", + "label": "知识问答" + }, + { + "text": "项目部(巡检站)采购的内容及金额需要在什么时间报物资管理中心备案?", + "label": "知识问答" + }, + { + "text": "本细则适用于哪些单位的物资采购工作?", + "label": "知识问答" + }, + { + "text": "何种情况下可以采用单一来源采购方式?", + "label": "知识问答" + }, + { + "text": "采用单一来源方式采购项目时,应遵循哪些规定?", + "label": "知识问答" + }, + { + "text": "在最终一轮报价前,评审小组需要告知应答人什么?", + "label": "知识问答" + }, + { + "text": "当拟成家供应商为2家及以上时,采购文件中需要明确哪些内容?", + "label": "知识问答" + }, + { + "text": "成交价格在100万元以内的询价和竞争性谈判采购,由哪个部门负责成交结果审定?", + "label": "知识问答" + }, + { + "text": "物资采购需要进行综合评审时,由哪个部门抽取相应评审专家?", + "label": "知识问答" + }, + { + "text": "评审专家无故不得请假,确需请假的需要提供什么?", + "label": "知识问答" + }, + { + "text": "综合计划的编制工作由哪个部门负责?", + "label": "知识问答" + }, + { + "text": "基层单位在综合计划编制过程中的职责是什么?", + "label": "知识问答" + }, + { + "text": "专项综合计划建议方案的编制依据是什么?", + "label": "知识问答" + }, + { + "text": "综合计划草案的审查会议由谁主持,哪些部门参与?", + "label": "知识问答" + }, + { + "text": "综合计划草案通过审查后,下一步的处理流程是什么?", + "label": "知识问答" + }, + { + "text": "专业管理部室(中心)在综合计划管理中的主要职责有哪些?", + "label": "知识问答" + }, + { + "text": "综合计划执行过程中,谁负责跟踪分析报告执行情况?", + "label": "知识问答" + }, + { + "text": "综合计划调整的建议由谁提出,需要经过哪些审批程序?", + "label": "知识问答" + }, + { + "text": "如果综合计划执行过程中出现重大偏差,应该如何处理?", + "label": "知识问答" + }, + { + "text": "综合计划中的各类数据和信息是如何进行汇总、审核和调整的?", + "label": "知识问答" + }, + { + "text": "在杆塔工程阶段,如果发现杆塔组立时擅自使用气割扩孔或者烧孔的情况,应该如何进行处理?", + "label": "知识问答" + }, + { + "text": "作业人员在架线工程阶段上下导线时踩踏复合绝缘子或均压环的行为,应如何避免?", + "label": "知识问答" + }, + { + "text": "在线路防护工程阶段,如何确保保护帽浇制后清理干净,避免塔腿及基础面上残留砂浆和现场拌制的混凝土余料残渣?", + "label": "知识问答" + }, + { + "text": "如何确保模板材质或加工质量合格,模板接缝、拼缝严密,使用过程中不脱皮、不变形?", + "label": "知识问答" + }, + { + "text": "在基础工程阶段,如何确保模板支撑加固牢固且符合措施要求?", + "label": "知识问答" + }, + { + "text": "对于乙供工程材料/构配件/设备,如何确保其到货检验的认真性和防止不合格品流入现场?", + "label": "知识问答" + }, + { + "text": "在基础工程阶段,如何严格执行冬期、高温与雨期混凝土施工、养护相关要求?", + "label": "知识问答" + }, + { + "text": "如果在杆塔工程阶段发现模板支撑加固不牢固或不符合措施要求的问题,应由谁来承担责任?", + "label": "知识问答" + }, + { + "text": "在架线工程阶段,如果发现作业人员上下导线时踩踏复合绝缘子或均压环的行为,直接责任人是谁?", + "label": "知识问答" + }, + { + "text": "在基础工程阶段,如果发现乙供工程材料/构配件/设备未进行到货检验或到货检验不认真,有不合格品流入现场的情况,间接责任人是谁?", + "label": "知识问答" + }, + { + "text": "国家电网有限公司输变电工程设计施工监理队伍选择专业管理办法中,对于设计施工监理队伍的选择依据是什么?", + "label": "知识问答" + }, + { + "text": "在输变电工程设计施工监理队伍选择过程中,如何确保队伍的专业能力和资质符合项目需求?", + "label": "知识问答" + }, + { + "text": "35-750千伏常规输变电工程的设计标包线路长度和最高投标限价的具体标准是什么?", + "label": "知识问答" + }, + { + "text": "对于输变电工程的施工标包,线路长度和最高投标限价的具体标准是什么?", + "label": "知识问答" + }, + { + "text": "在进行输变电工程设计施工监理招标时,有哪些特殊情况需要向国网基建部报批?", + "label": "知识问答" + }, + { + "text": "特高压及直流工程的标包划分主要依据哪些因素进行合理划分?", + "label": "知识问答" + }, + { + "text": "输变电工程设计施工监理队伍选择过程中,如何确保评标委员会成员的专业性和公正性?", + "label": "知识问答" + }, + { + "text": "在输变电工程设计施工监理队伍选择过程中,招标文件的编制和审查过程是如何进行的?", + "label": "知识问答" + }, + { + "text": "输变电工程设计施工监理队伍选择过程中,如何确保招标过程的透明度和公平性?", + "label": "知识问答" + }, + { + "text": "输变电工程设计施工监理队伍选择过程中,中标队伍确定后,合同签订及文件归档的具体流程是什么", + "label": "知识问答" + }, + { + "text": "消防给水系统阀门未有明显启闭标识,这是否会影响消防系统的正常运行?", + "label": "知识问答" + }, + { + "text": "架空消防镀锌管道未刷红色油漆,未注明管道名称,未做水流方向标识,这是否会影响管道的维护与检修?", + "label": "知识问答" + }, + { + "text": "建筑物的常闭防火门未在其明显位置设置“保持防火门关闭”等提示标识,这是否会影响人员在火灾情况下的疏散?", + "label": "知识问答" + }, + { + "text": "建筑物内灭火器箱未标明齐全相关信息,这是否会影响灭火器的使用效率?", + "label": "知识问答" + }, + { + "text": "室外消防栓未设置防撞设施及警示标识,这是否会影响消防栓的安全使用?", + "label": "知识问答" + }, + { + "text": "接地黄绿标识漆涂刷不均匀,这是否会影响接地系统的识别与维护?", + "label": "知识问答" + }, + { + "text": "接地扁钢切割面未做防腐处理,存在锈蚀现象,这是否会影响接地系统的安全性能?", + "label": "知识问答" + }, + { + "text": "变电容量120MV·A及以上变压器基础四周未设置沉降观测点,这是否会影响变压器的长期安全运行?", + "label": "知识问答" + }, + { + "text": "混凝土结构对拉螺栓孔洞未封堵,这是否会影响结构的防水性能?", + "label": "知识问答" + }, + { + "text": "建筑物的消防救援窗未设置明显标识,这是否会影响消防救援人员的操作效率?", + "label": "知识问答" + }, + { + "text": "根据《架空输电线路货运索道运输施工工艺导则》,索道运输方案适用于哪些施工条件?", + "label": "知识问答" + }, + { + "text": "在架设索道前,需要对哪些因素进行总体策划?", + "label": "知识问答" + }, + { + "text": "如何根据工程需要确定索道的载荷级别?", + "label": "知识问答" + }, + { + "text": "索道的日运输量是如何计算的?", + "label": "知识问答" + }, + { + "text": "当一级索道无法满足运输需求时,应采取什么措施?", + "label": "知识问答" + }, + { + "text": "索道路径选择时,始端和卸货点的位置选择有何要求?", + "label": "知识问答" + }, + { + "text": "索道的架设和运行过程中,必须遵守哪些安全规定?", + "label": "知识问答" + }, + { + "text": "在索道运输过程中,遇到雷雨、暴雨等恶劣天气时应如何处理?", + "label": "知识问答" + }, + { + "text": "索道跨越公路或有人通过的沟道时,需要采取哪些安全措施?", + "label": "知识问答" + }, + { + "text": "在悬崖险坡等危险地段,索道运输应采取哪些防护措施?", + "label": "知识问答" + }, + { + "text": "《安徽送变电工程有限公司大件运输管理办法(试行)》的主要目的是什么?", + "label": "知识问答" + }, + { + "text": "在大件运输工作周期内,进行安全检查和专项检查的频率如何确定?", + "label": "知识问答" + }, + { + "text": "安全检查中发现的问题和隐患如何处理?", + "label": "知识问答" + }, + { + "text": "编制运输方案时,需要考虑哪些因素以确保进度计划的科学性和合理性?", + "label": "知识问答" + }, + { + "text": "如何确保物资采购供应和施工机具、设备的及时进场?", + "label": "知识问答" + }, + { + "text": "在确保安全和质量的前提下,如何提高大件运输的劳动生产效率?", + "label": "知识问答" + }, + { + "text": "每周、每月检查运输进度计划的具体内容是什么?", + "label": "知识问答" + }, + { + "text": "如果运输进度计划执行中出现偏差,应该如何处理?", + "label": "知识问答" + }, + { + "text": "建设管理单位下发的运输进度计划调整要求时,应如何调整施工进度计划?", + "label": "知识问答" + }, + { + "text": "《安徽送变电工程有限公司大件运输管理办法(试行)》对运输过程中的突发事件如何应对?", + "label": "知识问答" + }, + { + "text": "钢丝绳中直径大于0.40 mm 的钢丝应用何种方式连接?", + "label": "知识问答" + }, + { + "text": "对于多股钢丝绳,每股中钢丝接头之间最小距离应满足什么要求?", + "label": "知识问答" + }, + { + "text": "钢丝绳表面应避免存在哪些制造缺陷?", + "label": "知识问答" + }, + { + "text": "钢丝绳结构的选择依据是什么?", + "label": "知识问答" + }, + { + "text": "单股钢丝绳中,任一钢丝层接头之间最小距离应为多少?", + "label": "知识问答" + }, + { + "text": "钢丝绳表面应如何处理以确保防锈和润滑?", + "label": "知识问答" + }, + { + "text": "钢丝绳表面不应存在哪些制造缺陷?", + "label": "知识问答" + }, + { + "text": "钢丝绳表面是否允许存在未涂上油脂的地方?", + "label": "知识问答" + }, + { + "text": "钢丝绳级应遵循哪些规定?", + "label": "知识问答" + }, + { + "text": "钢丝绳通用技术条件中于异型股钢丝绳和单股钢丝绳直径允许偏差有何具体规定?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司共执行了多少项检修工作?其中不停运检修有多少项?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司运管范围网络安全共发生了多少起故障?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司信息外网在运网络设备共有多少台?这些设备的主要品牌是什么?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司信息内网局域网网络IP地址的分配情况如何?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司信息外网地址的使用情况如何?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司网络边界的防护情况如何?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司在运的安全设备有哪些?这些设备的品牌和类型是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电工程有限公司信息内外网下上级联边界的定义是什么?其边界设备梳理情况如何?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司信息内网和信息外网的物理隔离情况如何?", + "label": "知识问答" + }, + { + "text": "2021年送变电公司信息内网和信息外网的网络通信异常情况如何?", + "label": "知识问答" + }, + { + "text": "在《国家电网有限公司安全事故调查规程》中,哪一级别的安全事故需要由公司总部直接组织调查组进行调查?", + "label": "知识问答" + }, + { + "text": "事故调查组在进行事故调查时,需要收集哪些类型的证据?", + "label": "知识问答" + }, + { + "text": "根据规程,如果发生人身死亡事故,事故调查组应在多长时间内发布事故快报?", + "label": "知识问答" + }, + { + "text": "事故调查组在确定事故责任时,依据哪些因素来划分直接责任者、领导责任者和主要责任者?", + "label": "知识问答" + }, + { + "text": "在事故调查过程中,如果发现事故单位有迟报、漏报、瞒报、谎报事故的情况,应如何处理?", + "label": "知识问答" + }, + { + "text": "对于发生六级以上安全事件的单位,规程中规定了哪些措施来中断其安全记录?", + "label": "知识问答" + }, + { + "text": "《国家电网有限公司安全事故调查规程》中,对于新投产设备在一年内发生由于设计、制造等单位负主要责任造成的五级及以下电网、设备事件,有何特殊规定?", + "label": "知识问答" + }, + { + "text": "事故调查组在提出防范措施时,通常会包括哪些方面?", + "label": "知识问答" + }, + { + "text": "在事故调查报告中,需要包含哪些具体内容?", + "label": "知识问答" + }, + { + "text": "《国家电网有限公司安全事故调查规程》中,对于确定为家族性缺陷的设备发生故障造成的六级及以下事件,有何特殊规定?", + "label": "知识问答" + }, + { + "text": "公司在管理创新工作方面有哪些具体目标?", + "label": "知识问答" + }, + { + "text": "为推动管理创新,公司计划采取哪些措施?", + "label": "知识问答" + }, + { + "text": "管理创新工作实施过程中,如何确保各项措施的有效执行?", + "label": "知识问答" + }, + { + "text": "公司将如何评估管理创新工作的成效?", + "label": "知识问答" + }, + { + "text": "公司在管理创新过程中,如何鼓励员工积极参与?", + "label": "知识问答" + }, + { + "text": "管理创新工作将如何与公司的整体战略目标相结合?", + "label": "知识问答" + }, + { + "text": "公司将如何处理在管理创新过程中遇到的挑战和问题?", + "label": "知识问答" + }, + { + "text": "管理创新工作如何与其他部门的工作相结合,实现协同效应?", + "label": "知识问答" + }, + { + "text": "公司将如何利用技术手段促进管理创新?", + "label": "知识问答" + }, + { + "text": "公司将如何建立管理创新成果的分享机制,促进知识传播?", + "label": "知识问答" + }, + { + "text": "《安徽送变电工程有限公司小型基建、配网工程施工分包管理办法》该管理办法中对于小型基建、配网工程的定义是什么?", + "label": "知识问答" + }, + { + "text": "施工分包的资质要求有哪些?如何进行资质审查?", + "label": "知识问答" + }, + { + "text": "在施工分包过程中,对于分包合同的签订有哪些具体要求?", + "label": "知识问答" + }, + { + "text": "该管理办法中对于分包工程的管理责任是如何划分的?", + "label": "知识问答" + }, + { + "text": "对于施工过程中出现的质量问题,管理办法中是如何规定责任追究的?", + "label": "知识问答" + }, + { + "text": "在施工分包中,对于安全生产的管理有哪些具体规定?", + "label": "知识问答" + }, + { + "text": "该管理办法中对于分包工程的进度管理有哪些要求?", + "label": "知识问答" + }, + { + "text": "对于施工分包的结算支付,该管理办法有哪些规定?", + "label": "知识问答" + }, + { + "text": "在施工分包过程中,对于变更和索赔的处理,该管理办法是如何规定的?", + "label": "知识问答" + }, + { + "text": "如何进行施工分包的监督和检查?具体检查内容和频次是什么?", + "label": "知识问答" + }, + { + "text": "远程视频查纠违章的申诉流程是什么?", + "label": "知识问答" + }, + { + "text": "责任单位或个人在收到违章整改通知单后,如果对违章事实存在异议,应该在什么时间内提出申诉?", + "label": "知识问答" + }, + { + "text": "提交申诉时,需要提供哪些相关佐证材料?", + "label": "知识问答" + }, + { + "text": "违章申诉的处理部门是哪个?", + "label": "知识问答" + }, + { + "text": "如果申诉理由成立,违章记录会如何处理?", + "label": "知识问答" + }, + { + "text": "违章整改通知单和违章整改反馈单的格式在哪里可以找到?", + "label": "知识问答" + }, + { + "text": "违章查纠视频资料保存期限是多久?", + "label": "知识问答" + }, + { + "text": "对于申诉结果不满意的,是否有进一步的申诉途径?", + "label": "知识问答" + }, + { + "text": "远程视频查纠违章的申诉机制中,是否涉及到第三方机构的介入?", + "label": "知识问答" + }, + { + "text": "违章申诉处理结果是否会在一定范围内进行公示?", + "label": "知识问答" + }, + { + "text": "根据《国网安徽省电力有限公司安全生产反违章工作管理规范》,对于发现的违章行为,如何进行分类和处理?", + "label": "知识问答" + }, + { + "text": "国网安徽省电力有限公司安全生产反违章工作管理规范该规范中提到的安全生产反违章工作的目标和原则是什么?", + "label": "知识问答" + }, + { + "text": "在日常工作中,员工如果发现同事有违章行为,应该如何报告?", + "label": "知识问答" + }, + { + "text": "国网安徽省电力有限公司安全生产反违章工作管理规范该规范中对于重大违章行为的处罚措施有哪些?", + "label": "知识问答" + }, + { + "text": "如何通过培训和教育减少违章行为的发生?", + "label": "知识问答" + }, + { + "text": "在进行安全生产检查时,对于发现的违章行为应该如何记录和处理?", + "label": "知识问答" + }, + { + "text": "对于频繁发生违章行为的部门或个人,公司会采取什么措施?", + "label": "知识问答" + }, + { + "text": "国网安徽省电力有限公司安全生产反违章工作管理规范该规范中提到的安全生产反违章工作的监督机制是什么?", + "label": "知识问答" + }, + { + "text": "如何通过技术手段防止违章行为的发生?", + "label": "知识问答" + }, + { + "text": "国网安徽省电力有限公司安全生产反违章工作管理规范该规范中对于员工自我检查和纠正违章行为的要求是什么?", + "label": "知识问答" + }, + { + "text": "总工程师职责有那些?", + "label": "知识问答" + }, + { + "text": "生产技改项目,应按什么要求编写三措一案?", + "label": "知识问答" + }, + { + "text": "施工方案编审批严禁采用什么方式?", + "label": "知识问答" + }, + { + "text": "宏源公司的危险性较大作业要报送到哪进行审批?", + "label": "知识问答" + }, + { + "text": "施工图纸会检由什么单位组织并主持?", + "label": "知识问答" + }, + { + "text": "图纸会检的重点是什么?", + "label": "知识问答" + }, + { + "text": "施工技术交底分为几个级别?", + "label": "知识问答" + }, + { + "text": "专项施工方案专家论证会应当有那些参会人员?", + "label": "知识问答" + }, + { + "text": "施工方案应满足哪些规程、规范的要求?", + "label": "知识问答" + }, + { + "text": "对外委托加工的成品的检查验收由什么单位负责?", + "label": "知识问答" + }, + { + "text": "架空输电线路施工机具振动要求是什么?", + "label": "知识问答" + }, + { + "text": "架空输电线路施工机具检验的基本规定是什么?", + "label": "知识问答" + }, + { + "text": "架空输电线路施工机具基本技术要求中机具入场检验的检验内容包括哪些?", + "label": "知识问答" + }, + { + "text": "架空输电线路施工机具基本技术要求中吊装带的使用应符合什么规定", + "label": "知识问答" + }, + { + "text": "架空输电线路施工机具基本技术要求中使用临时锚体前,应对工程现场的不同性状土质进行多少倍的使用载荷试验?", + "label": "知识问答" + }, + { + "text": "架空输电线路施工机具基本技术要求中切线机使用寿命不少于多少次", + "label": "知识问答" + }, + { + "text": "架空输电线路施工机具基本技术要求中放线工器具安全系数应不小于多少?", + "label": "知识问答" + }, + { + "text": "网套连接器要符合什么要求?", + "label": "知识问答" + }, + { + "text": "液压切线机重量不宜超过多少?", + "label": "知识问答" + }, + { + "text": "光缆牵引链和平衡锤应符合什么要求?", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计用年平均气温应按下列规定取值", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计安装工况风速应采用10m/s, 覆冰厚度应采用无冰,同时 气温应按什么规定取值?", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计杆塔类型宜符合什么规定?", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计杆塔使用宜遵守什么原则", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计中荷载分类宜符合什么要求", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计中杆塔上的固定标志,应符合什么规定", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计中线路换位宜符合哪些规定", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计中各类杆塔的正常运行情况,应计算什么荷载组合?", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计中耐张型杆塔的安装荷载应符合什么规定?", + "label": "知识问答" + }, + { + "text": "110kV~750kV 架空输电线路设计中普通混凝土杆和预应力混凝土杆的钢筋应符合什么要求", + "label": "知识问答" + }, + { + "text": "在什么情况下需要使用多级索道进行运输,而不是单级索道?", + "label": "知识问答" + }, + { + "text": "索道的路径选择应遵循哪些原则,以确保其安全性和有效性?", + "label": "知识问答" + }, + { + "text": "如何确定索道的载荷级别,并确保其大于运输货物中的最大运输重量?", + "label": "知识问答" + }, + { + "text": "在索道架设过程中,如何确保支架的稳定性和安全性?", + "label": "知识问答" + }, + { + "text": "牵引索和承载索的张力如何设定,以满足索道运行的要求?", + "label": "知识问答" + }, + { + "text": "在索道运行过程中,如何进行实时监测和维护,以确保其正常运行?", + "label": "知识问答" + }, + { + "text": "当索道停止运输工作时,有哪些安全措施需要采取?", + "label": "知识问答" + }, + { + "text": "在恶劣天气条件下,如雷雨、五级风以上等,是否允许进行索道作业?", + "label": "知识问答" + }, + { + "text": "如何对索道进行拆除,并确保拆除过程中的安全?", + "label": "知识问答" + }, + { + "text": "在Q/GDW 1418—2014标准中,为什么2000kg级及以上索道的牵引机不应使用后桥式牵引设备?", + "label": "知识问答" + }, + { + "text": "安全文明施工费使用台账应包括哪些内容?", + "label": "知识问答" + }, + { + "text": "哪个部门负责解释并监督实施《安徽送变电工程有限公司安全文明施工费使用管理规定(试行)》?", + "label": "知识问答" + }, + { + "text": "安全文明施工费是否包括“三同时”要求初期投入的安全设施费用?", + "label": "知识问答" + }, + { + "text": "安全文明施工费的应急管理费具体包括哪些项目?", + "label": "知识问答" + }, + { + "text": "在应急救援队伍的建设中,安全文明施工费可以用于哪些方面?", + "label": "知识问答" + }, + { + "text": "安全文明施工费是否可以用于支付安全风险评估的费用?", + "label": "知识问答" + }, + { + "text": "安全文明施工费是否可以用于购买保障安全的机械设备?", + "label": "知识问答" + }, + { + "text": "安全文明施工费是否可以用于支付安全检查、评估评价的费用?", + "label": "知识问答" + }, + { + "text": "《安徽送变电工程有限公司安全文明施工费使用管理规定(试行)》自何时开始实施?", + "label": "知识问答" + }, + { + "text": "《安徽送变电工程有限公司安全文明施工费使用管理规定(试行)》的实施是否废止了其他相关规定?", + "label": "知识问答" + }, + { + "text": "安徽送变电公司值班时间?", + "label": "知识问答" + }, + { + "text": "安徽送变电公司的值班时间是什么?", + "label": "知识问答" + }, + { + "text": "安徽送变电生产调控中心的值班规定?", + "label": "知识问答" + }, + { + "text": "安徽送变电生产调控中心的值班时间?", + "label": "知识问答" + }, + { + "text": "在培训过程中,如何使用不同的教学方法和形式来提高学员的参与度和学习效果?", + "label": "知识问答" + }, + { + "text": "如何评估培训效果,并根据评估结果进行相应的改进和调整?", + "label": "知识问答" + }, + { + "text": "安委会和安委办在应急事件中各自的职责和协作机制是什么?", + "label": "知识问答" + }, + { + "text": "对开展三维设计的工程,评审单位需重点评审哪些方面?", + "label": "知识问答" + }, + { + "text": "初步设计评审意见的主要内容是什么?", + "label": "知识问答" + }, + { + "text": "针对隐患清单中的 I 类隐患,您认为采取哪些措施可以从根本上避免隐患的发生?", + "label": "知识问答" + }, + { + "text": "国网基建部负责哪些工程规模的初步设计评审计划管理?", + "label": "知识问答" + }, + { + "text": "在起重设备使用管理中,如何有效避免操作人员的失误及设备故障导致的安全事故?", + "label": "知识问答" + }, + { + "text": "初步设计批复申请文件需包括哪些内容和附件?", + "label": "知识问答" + }, + { + "text": "验收销号制度在隐患治理中的重要性体现在哪些方面?", + "label": "知识问答" + }, + { + "text": "隧道内的通风系统不符合要求时,会对施工环境和人员安全产生哪些负面影响?", + "label": "知识问答" + }, + { + "text": "针对复杂地质、地理环境的工程,实地踏勘评审有哪些必要性?", + "label": "知识问答" + }, + { + "text": "如何通过东西帮扶措施,协助基础薄弱、专业人员不足的单位完成培训任务?", + "label": "知识问答" + }, + { + "text": "架线施工中,未对铁塔螺栓和地脚螺栓紧固情况复查可能会引发什么后果?", + "label": "知识问答" + }, + { + "text": "联系人彭开宇在反馈隐患清单实施问题中的主要职责是什么?", + "label": "知识问答" + }, + { + "text": "在二次灌浆混凝土未达到强度时拆除构架临时拉线属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "请描述从工程初步设计评审到批复的全过程及关键节点。", + "label": "知识问答" + }, + { + "text": "现场关键人员配置不到位有哪些具体表现?", + "label": "知识问答" + }, + { + "text": "请结合实际,谈谈如何平衡隐患排查的严格性与施工进度之间的关系。", + "label": "知识问答" + }, + { + "text": "结合通知内容,您认为在手册试行后,可能有哪些未覆盖到的风险点需要进一步管控?", + "label": "知识问答" + }, + { + "text": "吊物下有人经过的情形为何会被归为隐患?", + "label": "知识问答" + }, + { + "text": "15. 雨雪过后再进行起重作业时,为什么必须先进行试吊并确认制动器灵敏可靠后才能作业?", + "label": "知识问答" + }, + { + "text": "审定的设计文件和概算书由谁负责归档?", + "label": "知识问答" + }, + { + "text": "省公司如何对评审单位进行监督与评价?", + "label": "知识问答" + }, + { + "text": "安全生产任务分工制度如何确保分工明确、各负其责?", + "label": "知识问答" + }, + { + "text": "公司安委办在制定和修订安全生产工作任务分工时,依据了哪些原则?", + "label": "知识问答" + }, + { + "text": "此件限制性发布的范围和单位包括哪些?", + "label": "知识问答" + }, + { + "text": "初步设计评审文件存在哪些问题时,应在预审或工程评审阶段退回设计单位补充完善?", + "label": "知识问答" + }, + { + "text": "在充 SF6 气体时,为什么作业人员需要站在充气口的侧面或上风口?", + "label": "知识问答" + }, + { + "text": "《国网基建部关于印发输变电工程建设施工作业层班组建设等2项标准化手册的通知》的发布背景是什么?", + "label": "知识问答" + }, + { + "text": "各单位如何评估培训效果,并根据评估结果进行培训方式的调整和改进?", + "label": "知识问答" + }, + { + "text": "什么是输变电工程建设中的“四不两直”检查,它在安全管理中的作用是什么?", + "label": "知识问答" + }, + { + "text": "如何严格执行考试合格准入制度,确保班组人员通过岗前培训考试才能进入施工作业现场?", + "label": "知识问答" + }, + { + "text": "文件中提到的隐患治理措施是否需要结合不同地区的实际情况调整?请谈谈您的看法。", + "label": "知识问答" + }, + { + "text": "如果需要调整现有的工作制度,应履行哪些审批程序?", + "label": "知识问答" + }, + { + "text": "四级风险漏报或瞒报为何被归为 I 类隐患?", + "label": "知识问答" + }, + { + "text": "文件中未提及第三批试点工作,您如何看待这一分步推进的方式?", + "label": "知识问答" + }, + { + "text": "如何根据不同培训对象(班组骨干、技术工人、一般人员)编制符合要求的考试大纲和培训教材?", + "label": "知识问答" + }, + { + "text": "在地下挖土时未按规定顺序放坡挖掘属于哪种类型的隐患?", + "label": "知识问答" + }, + { + "text": "初步设计文件应符合哪些法律法规及标准要求?", + "label": "知识问答" + }, + { + "text": "在本单位的基建专家人才队伍建设中,如何通过培养和认证提高师资的专业性?", + "label": "知识问答" + }, + { + "text": "6. 金属抱杆在施工中使用时,若出现弯曲、腐蚀、裂纹等情况,为什么必须禁止进场使用?", + "label": "知识问答" + }, + { + "text": "初步设计评审需要满足哪些前置条件?", + "label": "知识问答" + }, + { + "text": "调控部门需要对系统接线方式提出哪些专业意见?", + "label": "知识问答" + }, + { + "text": "省公司是否可以将部分工程的批复权限下放至地市公司?如果可以,这种情况需满足什么条件?", + "label": "知识问答" + }, + { + "text": "“四不两直”检查具体的实施要求是什么?", + "label": "知识问答" + }, + { + "text": "针对架空线路施工的 I 类隐患,您认为可以采取哪些预防措施?", + "label": "知识问答" + }, + { + "text": "如何确保所有作业层班组人员(包括储备力量)都能通过培训考试,达到岗位的要求?", + "label": "知识问答" + }, + { + "text": "培训的“效果导向”原则如何确保培训的实效性和对作业人员的实际帮助?", + "label": "知识问答" + }, + { + "text": "评审单位在接收初步设计文件后,需在什么时间点前确认文件是否具备评审条件?", + "label": "知识问答" + }, + { + "text": "11. 施工单位在起重作业前为什么需要进行安全技术交底,确保作业人员熟悉起重方案和安全技术措施?", + "label": "知识问答" + }, + { + "text": "对于大型或特殊工程,评审单位为什么需要进行现场踏勘?", + "label": "知识问答" + }, + { + "text": "如何建立有效的反馈机制,确保培训过程中发现的问题能够得到及时解决并改进?", + "label": "知识问答" + }, + { + "text": "培训工作如何确保按制度要求开展,并且达到预期效果?", + "label": "知识问答" + }, + { + "text": "警示约谈和考核制度如何结合运作,以提升安全管理水平?", + "label": "知识问答" + }, + { + "text": "省公司在输变电工程初步设计审批中,负责管理哪些范围内的工程?", + "label": "知识问答" + }, + { + "text": "初步设计评审过程中的哪些环节最容易影响整体评审质量?如何改进?", + "label": "知识问答" + }, + { + "text": "公司安委会的组成架构包括哪些人员?", + "label": "知识问答" + }, + { + "text": "评审会议中如何对通用设计和初步设计进行对比?", + "label": "知识问答" + }, + { + "text": "新版手册在执行过程中,如何进行检查和监督,确保有效落地?", + "label": "知识问答" + }, + { + "text": "评审单位的专业能力、管理规范性及辅助评审系统对整体评审质量有何影响?", + "label": "知识问答" + }, + { + "text": "国网基建部通过试点工作推进全过程安全风险管控的步骤是什么?", + "label": "知识问答" + }, + { + "text": "公司安委会根据工作需要可新增哪些类型的工作制度?", + "label": "知识问答" + }, + { + "text": "各单位在建设输变电工程施工实训基地时,如何确保师资力量的雄厚和设施的完善?", + "label": "知识问答" + }, + { + "text": "在隧道开挖及支护中,未根据施工竖井的工作面数量设置通风机,可能引发哪些安全隐患?", + "label": "知识问答" + }, + { + "text": "国网基建部如何在2020-2023年期间,通过东西帮扶提升整体培训质量和效率?", + "label": "知识问答" + }, + { + "text": "在强化考核管控的过程中,如何确保每项措施落实到位,以达到培训的最终目标?", + "label": "知识问答" + }, + { + "text": "在初步设计评审过程中,各单位间应如何协作以确保工作高效完成?", + "label": "知识问答" + }, + { + "text": "如何处理安全生产工作中存在的突出问题,公司安委会采取了哪些措施?", + "label": "知识问答" + }, + { + "text": "为什么水上运输船舶需要具有运输资质并配备救生设备?", + "label": "知识问答" + }, + { + "text": "公司安委会全体会议的召开频率如何规定?主要讨论哪些事项?", + "label": "知识问答" + }, + { + "text": "如何确保在招标条款和现场管理中落实作业层班组培训的要求?", + "label": "知识问答" + }, + { + "text": "请描述公司安委会的构成、职责及其与公司安委办的关系。", + "label": "知识问答" + }, + { + "text": "什么样的施工机械会被认为存在重大安全隐患?", + "label": "知识问答" + }, + { + "text": "浅埋暗挖隧道施工中,如何平衡工程进度与安全管理的要求?", + "label": "知识问答" + }, + { + "text": "安委会文件和安委办文件的发文流程和签发权限有何不同?", + "label": "知识问答" + }, + { + "text": "《基建施工现场 I、II 级重大事故隐患清单(试行)》的制定主要基于哪些指导文件和背景要求?", + "label": "知识问答" + }, + { + "text": "该三年行动计划是否会涉及到跨区域的协调和组织工作?如果是,如何保障培训计划的统一性和效果?", + "label": "知识问答" + }, + { + "text": "各单位在强化考核管控时,如何确保对班组人员的考试内容进行有效的督促和再学习?", + "label": "知识问答" + }, + { + "text": "750 千伏地下变电站工程的初步设计评审工作由哪个部门负责管理?", + "label": "知识问答" + }, + { + "text": "此通知提到的国务院安委会“十五条”重要举措与公司“六精四化”三年行动计划之间的关系是什么?", + "label": "知识问答" + }, + { + "text": "钢格构式跨越架未设置独立拉线系统属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "在高压线下进行吊装作业时,如何保证安全距离?", + "label": "知识问答" + }, + { + "text": "您认为施工企业在执行这些安全管控措施时,主要的挑战和阻碍是什么?", + "label": "知识问答" + }, + { + "text": "工程概算投资管理中,如何实现技术方案的合理性与投资控制的平衡?", + "label": "知识问答" + }, + { + "text": "评审单位因评审质量不严造成重大工程问题,会受到哪些惩罚?", + "label": "知识问答" + }, + { + "text": "管母安装时为什么需要采取措施防止吊点绑扎滑动?", + "label": "知识问答" + }, + { + "text": "工程初步设计评审中,为什么强调技术方案和概算投资需同步开展?", + "label": "知识问答" + }, + { + "text": "新规则实施后,原《国家电网有限公司安全生产委员会工作规则》的效力如何处理?", + "label": "知识问答" + }, + { + "text": "警示约谈制度的主要目的是什么?适用于哪些情形?", + "label": "知识问答" + }, + { + "text": "控制系统与运行系统未完全隔离即开展工作属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "在施工装备中,安全工器具未满足哪些条件会被判定为 II 类隐患?", + "label": "知识问答" + }, + { + "text": "混凝土浇筑时局部荷载过大为何会被视为 I 类隐患?", + "label": "知识问答" + }, + { + "text": "本规则相较于2019年版本可能有哪些改进之处?", + "label": "知识问答" + }, + { + "text": "计划的第二阶段(2021年10月~2022年10月)希望实现哪些关键目标?", + "label": "知识问答" + }, + { + "text": "如果成员部门发现重大安全问题,应如何与公司安委会沟通?", + "label": "知识问答" + }, + { + "text": "安全问责约谈的主要步骤是什么?被约谈单位需提交哪些内容?", + "label": "知识问答" + }, + { + "text": "国网技术学院每年如何收集师资培训需求,并协助上报年度培训计划?", + "label": "知识问答" + }, + { + "text": "作业层班组的骨干、技术工人和一般人员的培训对象分别有哪些特点,如何根据其需求制定不同的培训内容?", + "label": "知识问答" + }, + { + "text": "起重设备使用前,为什么要进行试吊和调试试验?", + "label": "知识问答" + }, + { + "text": "对于考试组织效果不佳的单位,如何通过同业对标等考核方式进行改进?", + "label": "知识问答" + }, + { + "text": "在带电线路上测量间隔棒距离时,使用金属丝测绳或皮尺属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "在施工用电方面,哪些行为会被判定为 II 类隐患?", + "label": "知识问答" + }, + { + "text": "公司安委办在分析安全生产风险时采取了哪些措施?", + "label": "知识问答" + }, + { + "text": "安委会如何确保安全管理体系建设与全员安全生产责任制的有效联动?", + "label": "知识问答" + }, + { + "text": "在初步设计评审过程中,如何确保评审深度和质量?", + "label": "知识问答" + }, + { + "text": "租赁设备的操作人员需要具备哪些条件才能合法操作该设备?", + "label": "知识问答" + }, + { + "text": "为什么弃土堆离基坑顶边过近会被归为隐患?", + "label": "知识问答" + }, + { + "text": "对评审单位能力评价的主要内容有哪些?", + "label": "知识问答" + }, + { + "text": "信息化管理在输变电工程初步设计审批中有哪些具体应用场景?", + "label": "知识问答" + }, + { + "text": "此文件中,如何区分 I 类和 II 类重大事故隐患?", + "label": "知识问答" + }, + { + "text": "发现 I、II 级重大事故隐患后,各单位需要立即采取的具体措施有哪些?", + "label": "知识问答" + }, + { + "text": "初步设计审批的总体要求是什么?", + "label": "知识问答" + }, + { + "text": "国网技术学院将如何指导和要求各单位在培训、考试过程中实施相关标准?", + "label": "知识问答" + }, + { + "text": "5. 吊车在进场使用前应进行哪些安全检查,哪些设备和安全装置必须完好无损?", + "label": "知识问答" + }, + { + "text": "公司安委办的主要职责是什么?", + "label": "知识问答" + }, + { + "text": "在有限空间施工时,为什么需要确保两处井口开启?", + "label": "知识问答" + }, + { + "text": "进入有限空间作业前,为什么必须进行气体检测并进行实时监测?", + "label": "知识问答" + }, + { + "text": "在桩孔内使用燃油动力机械设备属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "起重设备的安全性能检验证书、产品合格证和安装使用说明书等文件的审核有什么重要性?", + "label": "知识问答" + }, + { + "text": "如何确保不同层次的培训人员(如高级培训师、初中级培训师)能够提供符合标准的教学内容?", + "label": "知识问答" + }, + { + "text": "各单位如何根据统一要求制定并实施作业人员培训考试计划?", + "label": "知识问答" + }, + { + "text": "初步设计评审会议纪要需在会议后多久提交?", + "label": "知识问答" + }, + { + "text": "在推动班组人员培训的过程中,如何制定详细的工作计划并确保顺利执行?", + "label": "知识问答" + }, + { + "text": "作业层班组培训的管理制度如何进行健全,如何将培训准入要求纳入输变电工程的安全管理体系?", + "label": "知识问答" + }, + { + "text": "文件对各单位在推进工作时的协同要求有哪些?", + "label": "知识问答" + }, + { + "text": "在拆除转角耐张杆塔导地线时,未打好反向拉线属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "输电线路工程的特殊环境交通问题如何通过设备升级和管理优化解决?", + "label": "知识问答" + }, + { + "text": "如何整合各单位的培训资源,确保培训工作得到充分支持?", + "label": "知识问答" + }, + { + "text": "各单位如何落实培训计划,确保班组人员能够完成技能考核并顺利通过考试?", + "label": "知识问答" + }, + { + "text": "提交的初步设计文件中,为何需要提供两个及以上可行的技术方案进行比较?", + "label": "知识问答" + }, + { + "text": "公司安委办如何通过通报制度分享安全生产经验和解决突出问题?", + "label": "知识问答" + }, + { + "text": "安委会全体会议和专题会议的会议方案是如何制定和批准的?", + "label": "知识问答" + }, + { + "text": "在2021年12月,如何确保在建线路作业层班组人员全员通过培训考试,并达成在建变电班组半数以上的目标?", + "label": "知识问答" + }, + { + "text": "公司安委会的工作规则制定的目的是什么?", + "label": "知识问答" + }, + { + "text": "各单位如何在师资力量建设方面配合国网技术学院的工作?", + "label": "知识问答" + }, + { + "text": "国网技术学院如何协调相关专家开展帮扶,提升整体培训效果?", + "label": "知识问答" + }, + { + "text": "培训教材将如何结合新兴技术(如AR)提升培训效果?", + "label": "知识问答" + }, + { + "text": "您认为在隐患排查过程中,如何平衡安全性与经济性之间的关系?", + "label": "知识问答" + }, + { + "text": "对于未规范设置警戒区域的施工作业点,会被归为哪类隐患?", + "label": "知识问答" + }, + { + "text": "培训内容和形式将如何根据班组人员的实际情况进行调整和优化?", + "label": "知识问答" + }, + { + "text": "如果发现重大事故隐患或安全风险,工作督办机制如何跟进和处理?", + "label": "知识问答" + }, + { + "text": "通知中强调“未经公司许可,严禁以任何方式对外传播和发布”,这一规定的意义是什么?", + "label": "知识问答" + }, + { + "text": "在评审过程中,评审单位需要重点关注哪些技术和投资方案?", + "label": "知识问答" + }, + { + "text": "培训过程中,如何避免“以培代考”现象,确保每一位学员都能够真正掌握必要的安全知识和技能?", + "label": "知识问答" + }, + { + "text": "公司安委办如何支持公司安委会的日常工作?", + "label": "知识问答" + }, + { + "text": "“统一标准”在作业层班组培训中具体包括哪些方面?", + "label": "知识问答" + }, + { + "text": "工程初步设计批复文件需经过哪些程序后才能执行?", + "label": "知识问答" + }, + { + "text": "各单位在日常巡查和“四不两直”督查中如何落实隐患清单的重点检查和治理?", + "label": "知识问答" + }, + { + "text": "初步设计评审会议应确定的主要内容包括哪些?", + "label": "知识问答" + }, + { + "text": "当公司安委会成员或部门发生变更时,应采取哪些措施?", + "label": "知识问答" + }, + { + "text": "在工程开工、转序或新班组入场时,如何核实培训情况,确保合格人员进入现场开展作业?", + "label": "知识问答" + }, + { + "text": "面对复杂的施工环境,您有哪些建议可以帮助更好地识别和消除隐患?", + "label": "知识问答" + }, + { + "text": "在“分层实施”方面,如何根据不同层次的作业人员制定和组织培训?", + "label": "知识问答" + }, + { + "text": "吊点绳等受力部位缺少构件时,会带来哪些施工风险?", + "label": "知识问答" + }, + { + "text": "您认为此次通知中提到的安全风险管控工作对未来工程建设管理的影响是什么?", + "label": "知识问答" + }, + { + "text": "在安全生产任务分工中,如何确保动态更新和任务落实?", + "label": "知识问答" + }, + { + "text": "为什么在桩孔内使用燃油动力机械设备会被列为 I 类隐患?", + "label": "知识问答" + }, + { + "text": "三年行动计划的最终目标是什么?如何通过该计划提升作业层班组的能力素质?", + "label": "知识问答" + }, + { + "text": "如果某单位在巡查中未能及时发现 I 级隐患,可能会带来哪些后果?", + "label": "知识问答" + }, + { + "text": "对于 750 千伏、500 千伏的改扩建工程,省公司是否有批复权限?", + "label": "知识问答" + }, + { + "text": "国网基建部印发《输变电工程建设全过程安全风险管控工作手册(试行)》的主要目的是什么?", + "label": "知识问答" + }, + { + "text": "安全履责评价如何与公司二级单位的业绩考核挂钩?", + "label": "知识问答" + }, + { + "text": "隐患治理工作不合格的单位将面临哪些量化考核的处罚?", + "label": "知识问答" + }, + { + "text": "初步设计文件中需包含哪些关键设计内容?", + "label": "知识问答" + }, + { + "text": "对于基础薄弱单位,如何通过师资和工作组织方面的帮扶来改善培训质量和效果?", + "label": "知识问答" + }, + { + "text": "如果媒体或其他主体违规公布、转载此通知,公司将采取哪些措施追究法律责任?", + "label": "知识问答" + }, + { + "text": "为什么“五条红线”被列为施工现场停工的强制性标准?", + "label": "知识问答" + }, + { + "text": "初步设计文件的内容深度需满足哪些规定?", + "label": "知识问答" + }, + { + "text": "地下作业时未设置良好的通风和照明会带来哪些安全问题?", + "label": "知识问答" + }, + { + "text": "各省公司基建部如何配合开发新颖的培训素材,并确保其效果明显?", + "label": "知识问答" + }, + { + "text": "不停电跨越施工中,牵张设备未可靠接地可能带来哪些危害?", + "label": "知识问答" + }, + { + "text": "公司安委会的主要依据包括哪些法律法规?", + "label": "知识问答" + }, + { + "text": "为什么恶劣天气中未停止相关施工作业被视为严重隐患?", + "label": "知识问答" + }, + { + "text": "临近带电作业时,未按规定范围操作及乱动设备或安全用具属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "在2021年6月,国网基建部如何总结师资培训经验并组织每年的师资培训工作?", + "label": "知识问答" + }, + { + "text": "在2022年10月修编和优化培训教材和配套短视频时,如何确保内容更新与培训效果相匹配?", + "label": "知识问答" + }, + { + "text": "大坎和高边坡基础施工前,地质情况不稳定且未清除上山坡浮动土石可能会引发哪些风险?", + "label": "知识问答" + }, + { + "text": "如何调整合同文本以确保培训考试的合格准入标准被有效执行?", + "label": "知识问答" + }, + { + "text": "架空线路工程的土石方施工中存在哪些关键安全风险?", + "label": "知识问答" + }, + { + "text": "在输变电工程建设中,如何持续强化施工作业单元的管控长效机制?", + "label": "知识问答" + }, + { + "text": "在施工作业层班组建设过程中,如何加强管理与培训,提高团队作业能力和安全意识?", + "label": "知识问答" + }, + { + "text": "为什么环保水保、站外电源等专项设计成果需要单独评审技术方案后计列费用?", + "label": "知识问答" + }, + { + "text": "班组骨干、技术工人和一般人员的考试合格有效期分别是多少?", + "label": "知识问答" + }, + { + "text": "初步设计及概算投资经审定后,为何原则上不予调整?", + "label": "知识问答" + }, + { + "text": "使用安全刺锥或切刀刺穿电缆时,周边作业人员未临时撤离,操作人员与刀头未保持足够的安全距离属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "如何定义 I 级和 II 级重大事故隐患的具体标准?", + "label": "知识问答" + }, + { + "text": "起重作业中的 I 类隐患对施工效率和安全性有何影响?", + "label": "知识问答" + }, + { + "text": "对于发现考试不合格的人员,公司将采取哪些措施来确保其通过重新培训合格后方可重入现场?", + "label": "知识问答" + }, + { + "text": "对于培训中的不合格人员,公司将采取什么措施进行补救?", + "label": "知识问答" + }, + { + "text": "如何通过“四不两直”检查提高输变电工程建设安全管理的实效?", + "label": "知识问答" + }, + { + "text": "在拆旧工程中,哪些管理手段可以有效降低施工隐患?", + "label": "知识问答" + }, + { + "text": "多项工程是否可以合并办理初步设计批复?有何要求?", + "label": "知识问答" + }, + { + "text": "编制责任单位如何处理各单位的反馈意见,并进行手册的修订和更新?", + "label": "知识问答" + }, + { + "text": "停电电缆线路作业时,未确认信号即进行下一步操作,可能会发生什么安全问题?", + "label": "知识问答" + }, + { + "text": "隐患排查和治理流程包括哪些主要环节?如何形成闭环管理?", + "label": "知识问答" + }, + { + "text": "在井内或隧道内使用燃油、燃气发电机时,未将发电机放置在下风口的隐患属于哪类?", + "label": "知识问答" + }, + { + "text": "在土方开挖过程中,未监测基坑周围土质的裂缝或渗水异常情况可能带来哪些潜在风险?", + "label": "知识问答" + }, + { + "text": "公司安委办如何组织实施安全检查,检查结果如何处理?", + "label": "知识问答" + }, + { + "text": "如何根据2021年培训情况进行总结,并编制2022年培训计划?", + "label": "知识问答" + }, + { + "text": "如何实施统一的考试实施方案,确保考试过程中的标准化和公平性?", + "label": "知识问答" + }, + { + "text": "三级及以上施工风险点的人员配置要求未满足时会被归类为哪种隐患?", + "label": "知识问答" + }, + { + "text": "如何通过统一的考试和评估机制,确保作业层班组人员在岗位上具备足够的安全素质和技术能力?", + "label": "知识问答" + }, + { + "text": "培训是否会涵盖一些新的工作技术和方法,如何保障学员能够紧跟行业发展和技术进步?", + "label": "知识问答" + }, + { + "text": "督查督办制度如何通过检查、巡查和工作督办三个环节保证工作落实?", + "label": "知识问答" + }, + { + "text": "通知强调“铁腕治安”的核心目标是什么?", + "label": "知识问答" + }, + { + "text": "公司安委会专题会议的召开频率和主要目的是什么?", + "label": "知识问答" + }, + { + "text": "抱杆超过30米时采用正装方式组立有什么潜在的隐患?", + "label": "知识问答" + }, + { + "text": "请总结《输变电工程建设全过程安全风险管控工作手册(试行)》在工程建设中的作用和意义。", + "label": "知识问答" + }, + { + "text": "公司安委会主任和常务副主任由谁担任?", + "label": "知识问答" + }, + { + "text": "公司安委办如何通过巡查和检查监督安全责任的落实?", + "label": "知识问答" + }, + { + "text": "4. 在施工现场使用吊车前,施工单位应如何检查起重设备的安全状况和操作人员的资格?", + "label": "知识问答" + }, + { + "text": "初步设计评审会议可以采用哪些形式开展?采用不同形式的依据是什么?", + "label": "知识问答" + }, + { + "text": "各省公司如何与国网技术学院协作,确保实训基地建设符合培训需求并顺利开展?", + "label": "知识问答" + }, + { + "text": "针对隐患清单中涉及的不同作业类型,如何针对性地开展安全培训?", + "label": "知识问答" + }, + { + "text": "安全生产工作中的“人、财、物”保障应如何提供支持?", + "label": "知识问答" + }, + { + "text": "通知如何与2022年输变电工程建设的“抓责任、精管理、固基础”安全主题活动相结合?", + "label": "知识问答" + }, + { + "text": "如何将班组人员岗前培训考试合格准入纳入基建通用制度,并确保在招投标和现场管理中落实?", + "label": "知识问答" + }, + { + "text": "如何提高输变电工程建设的安全检查实效?", + "label": "知识问答" + }, + { + "text": "各单位如何加强对班组人员培训工作的重视,成立专门工作小组并强化责任落实?", + "label": "知识问答" + }, + { + "text": "国网技术学院如何协助公司制定技能人员考核大纲,并如何对技能考核情况进行研究?", + "label": "知识问答" + }, + { + "text": "各单位如何结合实际情况对班组人员进行技能考核,并确保考核符合岗位要求?", + "label": "知识问答" + }, + { + "text": "哪些情况下需要安排实地踏勘评审?", + "label": "知识问答" + }, + { + "text": "从管理角度看,通知中提到的“五条红线”对施工现场安全管理有何深远影响?", + "label": "知识问答" + }, + { + "text": "公司安委会联络员的职责是什么?联络员变更时应如何调整?", + "label": "知识问答" + }, + { + "text": "对于工程概算中的拆迁赔偿费用,应如何确保其合理性和合规性?", + "label": "知识问答" + }, + { + "text": "如果未按要求召开“每日站班会”,会被归为 I 类还是 II 类隐患?", + "label": "知识问答" + }, + { + "text": "各部门和机构在执行安全生产任务分工时需要完成哪些关键任务?", + "label": "知识问答" + }, + { + "text": "如何通过评价考核机制提高初步设计评审工作的整体质量?", + "label": "知识问答" + }, + { + "text": "为什么在试验结束后需要将残留电荷放净后才能拆除接地装置?", + "label": "知识问答" + }, + { + "text": "财务、安监、科技等部门在初步设计审批中有哪些职责?", + "label": "知识问答" + }, + { + "text": "收口文件及概算书应在收口会议计划时间前多久送达相关单位?", + "label": "知识问答" + }, + { + "text": "您如何评价公司将隐患排查治理情况与量化考核挂钩的做法?", + "label": "知识问答" + }, + { + "text": "各级单位如何统一专业部门意见,确保初步设计评审的科学性与规范性?", + "label": "知识问答" + }, + { + "text": "第一批试点省公司在扩大试点范围和深化成果应用时,可能面临哪些挑战?", + "label": "知识问答" + }, + { + "text": "工程初步设计概算总投资应遵循哪些原则?", + "label": "知识问答" + }, + { + "text": "在行文制度中,公司安委会公章和安委办公章的使用场景有哪些?", + "label": "知识问答" + }, + { + "text": "国网技术学院在考试过程中的职责有哪些?各单位如何配合确保考试顺利进行?", + "label": "知识问答" + }, + { + "text": "初步设计评审会议纪要应包括哪些关键内容?", + "label": "知识问答" + }, + { + "text": "各单位如何根据实际情况推进培训和实训基地的建设,并确保基地具有针对性、规范性和高效性?", + "label": "知识问答" + }, + { + "text": "计划中的短视频和多媒体材料如何辅助培训教材,提升学员学习的便利性和效果?", + "label": "知识问答" + }, + { + "text": "在母线与带电母线靠近时,母线未接地会对施工人员和设备造成哪些威胁?", + "label": "知识问答" + }, + { + "text": "在杆塔施工中,吊件垂直下方有人时,可能引发哪些危险?", + "label": "知识问答" + }, + { + "text": "母线安装和电气调试中,安全隐患如何通过工艺改进和现场管理进行预防?", + "label": "知识问答" + }, + { + "text": "项目法人单位或建设管理单位的评价内容主要包括哪些方面?", + "label": "知识问答" + }, + { + "text": "您认为动态修编隐患清单时,哪些方面需要特别关注?", + "label": "知识问答" + }, + { + "text": "为什么深度超过5米的基槽开挖需要分层开挖并边开挖边支护?", + "label": "知识问答" + }, + { + "text": "评审单位在输变电工程初步设计评审中主要负责哪些工作?", + "label": "知识问答" + }, + { + "text": "如何确保培训过程的顺畅和管控有效,避免出现培训质量问题?", + "label": "知识问答" + }, + { + "text": "第一批12家省公司的全过程风险管控试点工作取得了哪些经验?", + "label": "知识问答" + }, + { + "text": "在2021年12月,国网基建部如何建立技能人员考核大纲,并进行实训基地资源统计?", + "label": "知识问答" + }, + { + "text": "各省公司需在每年的哪个时间节点向国网基建部报送次年初步设计评审预安排?", + "label": "知识问答" + }, + { + "text": "公司设备部门需要对哪些内容进行技术监督?", + "label": "知识问答" + }, + { + "text": "本计划的实施将如何提高一线作业人员的素质和技能,进而保障输变电工程的安全性?", + "label": "知识问答" + }, + { + "text": "7. 抱杆帽或承托环的表面裂纹或螺纹变形等情况对施工安全有哪些潜在影响?", + "label": "知识问答" + }, + { + "text": "通过已完成的2020年师资培训,国网基建部如何建立和完善师资队伍库?", + "label": "知识问答" + }, + { + "text": "施工作业层班组如何进行标准化建设,确保工程安全高效推进?", + "label": "知识问答" + }, + { + "text": "为什么在盾构隧道施工中,通风设备必须使用大功率、高性能风机,并检测气体含量?", + "label": "知识问答" + }, + { + "text": "隧道开挖及支护过程中,如何确保通风设施的有效性和施工人员的安全?", + "label": "知识问答" + }, + { + "text": "公司如何通过“四不两直”检查、抽查考试和调考等方式,确保现场人员培训考试情况符合标准?", + "label": "知识问答" + }, + { + "text": "使用低压架空线时需要满足哪些要求才能避免隐患?", + "label": "知识问答" + }, + { + "text": "每月 20 日前,各省公司需完成哪些与评审计划相关的工作?", + "label": "知识问答" + }, + { + "text": "作业人员通过培训考试后,如何确保其能够顺利地上岗,达到安全、优质、高效的施工目标?", + "label": "知识问答" + }, + { + "text": "国网基建部如何在2020年12月编制师资考试准入制度,确保师资队伍的高标准建设?", + "label": "知识问答" + }, + { + "text": "如何健全常态管控机制,确保培训工作能够按计划层层落实和推进?", + "label": "知识问答" + }, + { + "text": "使用燃油、燃气机械设备时,未按规定检测隧道内气体的有毒、有害、可燃性及氧气含量属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "为什么转向滑轮钢丝绳内侧有人停留或通过会被视为 II 类隐患?", + "label": "知识问答" + }, + { + "text": "各单位在实施隐患清单过程中如何提交意见和建议?", + "label": "知识问答" + }, + { + "text": "技能考核在培训中的作用是什么,如何为全面开展技能培训奠定基础?", + "label": "知识问答" + }, + { + "text": "在进行电缆绝缘耐压试验时,如何确保相关操作的安全性和作业人员的防护?", + "label": "知识问答" + }, + { + "text": "在整个培训过程中,如何通过考试、认证等手段确保培训的有效性和实用性?", + "label": "知识问答" + }, + { + "text": "《基建施工现场 I、II 级重大事故隐患清单》包含了哪些关键内容?", + "label": "知识问答" + }, + { + "text": "如何协助基础薄弱、专业人员不足的单位,完成培训任务并确保培训效果?", + "label": "知识问答" + }, + { + "text": "对触及“五条红线”的隐患,公司要求采取哪些强制措施?", + "label": "知识问答" + }, + { + "text": "在有限空间工作完毕后,未按照作业票清点工作人员可能导致什么安全风险?", + "label": "知识问答" + }, + { + "text": "公司安委会联络员会议的参会人员有哪些?会议的主要内容是什么?", + "label": "知识问答" + }, + { + "text": "变电站内移运铁管时,高举过头顶并未保持与带电部位的安全距离,会引发什么样的风险?", + "label": "知识问答" + }, + { + "text": "《国家电网有限公司输变电工程建设施工作业层班组建设标准化手册》对施工作业层班组建设提出了哪些要求?", + "label": "知识问答" + }, + { + "text": "起重作业中,如何合理规避外部天气因素对作业安全的影响?", + "label": "知识问答" + }, + { + "text": "2023年10月前,如何确保所有作业层班组人员(含储备力量)通过培训考试?", + "label": "知识问答" + }, + { + "text": "在培训过程中,如何根据现场的急用情况和班组作业风险程度确定培训的优先顺序?", + "label": "知识问答" + }, + { + "text": "当使用绞磨或卷扬机进行管母安装时,未设专人指挥会被归类为哪种隐患?", + "label": "知识问答" + }, + { + "text": "在未来的培训过程中,如何不断完善培训内容并适应实际需求,提升培训的质量与效果?", + "label": "知识问答" + }, + { + "text": "“闭环管控”原则在施工作业层班组培训中如何确保培训的持续性和效果?", + "label": "知识问答" + }, + { + "text": "13. 为什么施工人员在起重作业时必须严格按照设备的起重性能要求进行作业,且禁止超载?", + "label": "知识问答" + }, + { + "text": "各单位如何总结培训经验,提升培训实效,并不断改进培训工作方式和方法?", + "label": "知识问答" + }, + { + "text": "如何鼓励和引导各单位结合实践创新工作方式方法,以有效推动计划的落地和实施?", + "label": "知识问答" + }, + { + "text": "脚手架拆除顺序不当会被视为哪种类型的隐患?", + "label": "知识问答" + }, + { + "text": "如何避免在有限空间施工中发生气体中毒或其他安全事故?", + "label": "知识问答" + }, + { + "text": "在2021年3月完成短视频制作及审核时,如何保证短视频内容和形式对培训效果的提升?", + "label": "知识问答" + }, + { + "text": "该标准化手册的实施会对输变电工程建设的安全管理产生哪些影响?", + "label": "知识问答" + }, + { + "text": "2020年到2021年期间的培训目标是什么?具体会完成哪些工作?", + "label": "知识问答" + }, + { + "text": "公司安委会如何通过任务分工和督查机制确保安全生产工作目标的实现?", + "label": "知识问答" + }, + { + "text": "安全简报和重大事故隐患排查治理报告的发布频率和目的是什么?", + "label": "知识问答" + }, + { + "text": "索道未验收合格就投入使用为何会被视为 I 类隐患?", + "label": "知识问答" + }, + { + "text": "地锚布置与受力方向不一致被归为哪类隐患?", + "label": "知识问答" + }, + { + "text": "本办法的适用范围包括哪些工程类型和电压等级?", + "label": "知识问答" + }, + { + "text": "初步设计评审工作的实施计划是如何安排的?", + "label": "知识问答" + }, + { + "text": "评审单位在预审阶段需完成哪些协调工作以提高评审质量?", + "label": "知识问答" + }, + { + "text": "安全评价标准的建立目的是什么?评价结果会影响哪些方面?", + "label": "知识问答" + }, + { + "text": "对于第二批试点省公司,如何根据第一批的经验制定适合本地的实施方案?", + "label": "知识问答" + }, + { + "text": "本办法制定的依据是什么?", + "label": "知识问答" + }, + { + "text": "隧道开挖支护时,未按设计图纸控制开挖步距会带来什么后果?", + "label": "知识问答" + }, + { + "text": "拆除线路时,未先核对线路名称并验电、挂接地线会带来什么风险?", + "label": "知识问答" + }, + { + "text": "起重设备租赁合同中,双方的安全责任应如何明确?", + "label": "知识问答" + }, + { + "text": "在混凝土未达到拆模强度时进行拆模会带来哪些安全隐患?", + "label": "知识问答" + }, + { + "text": "电缆绝缘耐压试验过程中更换试验引线时,未先对设备充分放电并且作业人员未戴好绝缘手套的隐患属于哪类?", + "label": "知识问答" + }, + { + "text": "为什么马头门施工需要按照顺序进行?", + "label": "知识问答" + }, + { + "text": "深基槽未制定边坡变形抢险预案可能带来哪些风险?", + "label": "知识问答" + }, + { + "text": "公司在隐患排查治理方面的抽查和复核具体如何实施?", + "label": "知识问答" + }, + { + "text": "为什么《输变电工程施工作业层班组标准化建设示范手册(试行)》和《基建安全质量“四不两直”检查标准化手册》的废止是必要的?", + "label": "知识问答" + }, + { + "text": "如何落实《国家电网有限公司输变电工程建设施工作业层班组建设标准化手册》中的相关规定?", + "label": "知识问答" + }, + { + "text": "提交评审的初步设计文件还需附带哪些相关意见或文件?", + "label": "知识问答" + }, + { + "text": "培训基地的管理与使用如何由公司统筹,以最大化基地的作用和效益?", + "label": "知识问答" + }, + { + "text": "盾构隧道施工中,未做好对管线和建(构)筑物的保护方案会对项目安全带来哪些威胁?", + "label": "知识问答" + }, + { + "text": "如何确保考试过程中,所有考务服务环节能够按计划执行,达到预定目标?", + "label": "知识问答" + }, + { + "text": "公司安委会在生产安全事故应急处置中的职责是什么?", + "label": "知识问答" + }, + { + "text": "为什么需要结合输变电工程施工现场关键点作业安全管控措施、事故教训和检查问题来形成隐患清单?", + "label": "知识问答" + }, + { + "text": "停电电缆线路切改施工时,未使用专用仪器进行判定并刺穿电缆,可能导致哪些危险?", + "label": "知识问答" + }, + { + "text": "在陡坡上进行边坡开挖作业时,未设置防护栏杆或系安全带属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "如何将“安全第一、预防为主、综合治理”的安全生产方针贯彻到施工作业层班组的培训过程中?", + "label": "知识问答" + }, + { + "text": "对于远程视频评审形式,有哪些质量管控和安全管理的要求?", + "label": "知识问答" + }, + { + "text": "为什么紧线段未设置临时拉线会被视为 I 类隐患?", + "label": "知识问答" + }, + { + "text": "在安全生产巡查中,公司安委办如何发现和解决突出问题?", + "label": "知识问答" + }, + { + "text": "分解吊拆杆塔时,未让构件受力即拆除连接螺栓属于什么类型隐患?", + "label": "知识问答" + }, + { + "text": "国网基建部在输变电工程初步设计审批管理中的主要职责有哪些?", + "label": "知识问答" + }, + { + "text": "在明开隧道施工中,吊运弃土所使用的设备为何需要自动卡紧保险装置?", + "label": "知识问答" + }, + { + "text": "如果某单位安全生产问题频发,公司安委会将采取哪些应对措施?", + "label": "知识问答" + }, + { + "text": "连墙件偏离主节点距离过大为何会被归为隐患?", + "label": "知识问答" + }, + { + "text": "在施工区域与运行部分未设置有效的安全隔离措施时,会带来哪些风险?", + "label": "知识问答" + }, + { + "text": "国网基建部如何推动基于AR等新颖形式的培训素材开发,以提高培训效果?", + "label": "知识问答" + }, + { + "text": "地市公司在输变电工程初步设计审批管理中的职责是什么?", + "label": "知识问答" + }, + { + "text": "初步设计审定后,评审单位需在几天内向项目法人单位提交评审意见?", + "label": "知识问答" + }, + { + "text": "为什么需要对隐患清单进行动态修编?", + "label": "知识问答" + }, + { + "text": "在执行新的安全管理手册时,如何解决实施过程中遇到的挑战和问题?", + "label": "知识问答" + }, + { + "text": "第二批15家省公司在试点工作中应重点关注哪些方面?", + "label": "知识问答" + }, + { + "text": "按照“三管三必须”原则,各部门在安全生产中应承担哪些责任?", + "label": "知识问答" + }, + { + "text": "在山区交通中,人员与设备混装属于哪类隐患?", + "label": "知识问答" + }, + { + "text": "项目法人单位或建设管理单位在评审计划下达前需完成哪些内部工作?", + "label": "知识问答" + }, + { + "text": "各单位如何根据实际情况确定培训计划安排,并确保按计划完成培训工作?", + "label": "知识问答" + }, + { + "text": "如何按照考试大纲分专业分对象编制培训教材,确保内容的全面性和针对性?", + "label": "知识问答" + }, + { + "text": "通知要求的“排查-评估-治理-验收销号”闭环管理机制如何在实际工作中应用?", + "label": "知识问答" + }, + { + "text": "在2020年12月,国网基建部如何组织试点,完成1200人作业人员的培训考试?", + "label": "知识问答" + }, + { + "text": "起重设备投入使用前,施工单位需要提供哪些相关资料以供监理单位审查?", + "label": "知识问答" + }, + { + "text": "《国网基建部关于印发输变电工程施工作业层班组培训三年行动计划的通知》的主要目的是什么?", + "label": "知识问答" + }, + { + "text": "公司安委会在分析安全生产形势和解决重大问题方面有哪些职责?", + "label": "知识问答" + }, + { + "text": "初步设计评审的主要流程包括哪些环节?", + "label": "知识问答" + }, + { + "text": "公司安委会在安全风险分级管控和隐患排查治理中扮演了什么角色?", + "label": "知识问答" + }, + { + "text": "施工单位在租赁起重设备时,为什么需要确保租赁公司具备国家有关部门的经营许可?", + "label": "知识问答" + }, + { + "text": "初步设计审批需要遵循哪些原则?", + "label": "知识问答" + }, + { + "text": "什么是全员安全生产责任制?公司安委会如何推动其落实?", + "label": "知识问答" + }, + { + "text": "如何进一步加强隐患清单在不同级别单位的落地执行?", + "label": "知识问答" + }, + { + "text": "当初步设计规模或概算与可行性研究发生重大变化时,需满足哪些条件才能获得批复?", + "label": "知识问答" + }, + { + "text": "安全提醒谈话和安全纠错约谈的主要区别是什么?", + "label": "知识问答" + }, + { + "text": "为什么拆旧导地线时禁止带张力断线?", + "label": "知识问答" + }, + { + "text": "各单位如何加强培训资源的统筹和协调,以为培训工作提供充分的保障?", + "label": "知识问答" + }, + { + "text": "如何利用信息化手段为培训工作提供技术支持,并确保各单位的协调和支持?", + "label": "知识问答" + }, + { + "text": "为什么要加强输变电工程建设作业现场的安全管控?", + "label": "知识问答" + }, + { + "text": "公司安委办如何参与应急演练和事故调查处理?", + "label": "知识问答" + }, + { + "text": "在实际执行中,各单位如何平衡风险管控与工程进度之间的关系?", + "label": "知识问答" + }, + { + "text": "国网技术学院在师资培训方面将采取哪些具体措施,如何确保培训师资的质量?", + "label": "知识问答" + }, + { + "text": "在考核与培训过程中,如何保证各项标准和程序得到严格遵循,以确保培训的高效与规范?", + "label": "知识问答" + }, + { + "text": "当堆土距离坑边小于1米且高度超过1.5米时,会被归为哪类隐患?", + "label": "知识问答" + }, + { + "text": "安全检查、巡查和工作督办的区别和联系是什么?", + "label": "知识问答" + }, + { + "text": "各业务部门如何分工协作,确保不同来源的班组人员培训考试顺利进行?", + "label": "知识问答" + }, + { + "text": "初步设计文件应在评审会议计划时间前多久送达评审单位及有关部门?", + "label": "知识问答" + }, + { + "text": "公司安委会如何贯彻落实党中央、国务院的安全生产方针政策?", + "label": "知识问答" + }, + { + "text": "评审单位需具备哪些资质或资信评价等级才能开展评审工作?", + "label": "知识问答" + }, + { + "text": "在电缆绝缘耐压试验前,未对电缆充分放电会带来哪些潜在危险?", + "label": "知识问答" + }, + { + "text": "塔吊起吊作业未配备合格特种作业人员会被视为哪类隐患?", + "label": "知识问答" + }, + { + "text": "在协调国家和公司安全生产决策部署的过程中,公司安委办的具体职责是什么?", + "label": "知识问答" + }, + { + "text": "明开隧道施工前的现场调查有哪些关键步骤?", + "label": "知识问答" + }, + { + "text": "请谈谈如何在实际工作中确保文件中的隐患清单被严格落实。", + "label": "知识问答" + }, + { + "text": "如何评价“三管三必须”原则在公司安全管理体系中的重要性?", + "label": "知识问答" + }, + { + "text": "为什么在评审意见中需明确基建新技术研究项目及费用?", + "label": "知识问答" + }, + { + "text": "当两台起重机进行抬吊作业时,操作和指挥人员离开岗位会造成哪些安全隐患?", + "label": "知识问答" + }, + { + "text": "当被约谈单位收到警示后,应如何制定整改措施并向公司安委办反馈?", + "label": "知识问答" + }, + { + "text": "在安全巡查中,“回头看”机制的作用是什么?", + "label": "知识问答" + }, + { + "text": "请总结公司安委会会议制度的核心内容及其在安全生产工作中的作用。", + "label": "知识问答" + }, + { + "text": "在三维设计文件评审中,如何确保格式、数据及碰撞检查的准确性?", + "label": "知识问答" + }, + { + "text": "《基建施工现场 I、II 级重大事故隐患清单(试行)》的主要用途和适用范围是什么?", + "label": "知识问答" + }, + { + "text": "公司发展部门在初步设计审批中重点关注哪些方面?", + "label": "知识问答" + }, + { + "text": "对于电缆线路施工中的安全隐患,您认为应如何制定有效的预防措施?", + "label": "知识问答" + }, + { + "text": "如何确保培训内容和方式不断更新优化,以适应现场工作的变化和需求?", + "label": "知识问答" + }, + { + "text": "手册试行期间,各单位需要采取哪些措施确保风险管控工作顺利实施?", + "label": "知识问答" + }, + { + "text": "如何确保培训计划的执行效果,并根据反馈进行必要的调整和完善?", + "label": "知识问答" + }, + { + "text": "如何确保租赁的起重设备符合施工要求,并确保作业人员的安全?", + "label": "知识问答" + }, + { + "text": "培训的合格标准是什么,如何通过考核结果评估培训效果和作业人员的能力水平?", + "label": "知识问答" + }, + { + "text": "初步设计审批涉及哪些阶段的全过程管理内容?", + "label": "知识问答" + }, + { + "text": "从隐患清单的内容看,文件对施工现场管理提出了哪些重要的安全性要求?", + "label": "知识问答" + }, + { + "text": "对变电站站址和线路通道内涉及重大补偿的情况,应依据哪些文件或协议核定费用?", + "label": "知识问答" + }, + { + "text": "12. 在起重作业前,操作人员应如何了解作业现场环境及构件重量、分布等情况?", + "label": "知识问答" + }, + { + "text": "如果施工现场未严格执行隐患清单中的要求,会对施工进度和安全带来哪些影响?", + "label": "知识问答" + }, + { + "text": "如何根据2022年的培训情况总结经验并制定2023年的培训计划?", + "label": "知识问答" + }, + { + "text": "初步设计评审采用何种管理模式?", + "label": "知识问答" + }, + { + "text": "如何理解“初步设计审批应严格遵循‘严肃性、精准性、科学性、规范性’原则”?结合实际工程举例说明。", + "label": "知识问答" + }, + { + "text": "在地下变电站施工时,如何在保证施工进度的同时全面防范隐患?", + "label": "知识问答" + }, + { + "text": "在初步设计评审中,哪些配套设计成果需同步提交评审?", + "label": "知识问答" + }, + { + "text": "针对初步设计审批的管理要求,您认为哪些环节最容易出现问题?如何优化?", + "label": "知识问答" + }, + { + "text": "国网基建部在2020年11月开展的管理制度健全工作,具体包括哪些内容?", + "label": "知识问答" + }, + { + "text": "2022年到2023年期间的目标将如何确保培训内容的持续完善?", + "label": "知识问答" + }, + { + "text": "国网基建部如何推动初步设计评审工作的标准化和信息化?", + "label": "知识问答" + }, + { + "text": "如何通过各单位推荐选拔并统一培训,建立一支高素质的师资队伍?", + "label": "知识问答" + }, + { + "text": "评审收口工作需在评审会议后多长时间内完成?", + "label": "知识问答" + }, + { + "text": "起重设备的检验和使用管理环节中,如何保障设备在施工中的正常运行及操作安全?", + "label": "知识问答" + }, + { + "text": "初步设计文件的编制需依据哪些文件的建设规模和技术方案?", + "label": "知识问答" + }, + { + "text": "国网技术学院在编制系列培训教材方面,如何确保教材适应性强,能够帮助人员更好地掌握知识?", + "label": "知识问答" + }, + { + "text": "为什么塔脚板就位后必须上齐垫板、螺帽,并完成紧固?", + "label": "知识问答" + }, + { + "text": "国网技术学院在推动实训基地建设方面的角色是什么,如何指导各单位规范基地建设和运营?", + "label": "知识问答" + }, + { + "text": "该规则适用于哪些单位,其他单位应如何参照执行?", + "label": "知识问答" + }, + { + "text": "如果未进行施工三级验收或无转序验收报告直接开展作业,会被归为哪类隐患?", + "label": "知识问答" + }, + { + "text": "存在达标投产考核“否决项”的情形属于哪种类型的隐患?", + "label": "知识问答" + }, + { + "text": "公司如何确保考试试卷、考试时间、阅卷标准统一,以保障考试效果的公正性和有效性?", + "label": "知识问答" + }, + { + "text": "国网技术学院如何协调和统一各单位培训计划,以提升整体培训工作的质量和效果?", + "label": "知识问答" + }, + { + "text": "如何推进实训基地建设,确保基地验收挂牌并统筹使用?", + "label": "知识问答" + }, + { + "text": "在培训工作中,如何解决管理上的难点问题,并及时协调解决培训过程中遇到的问题?", + "label": "知识问答" + }, + { + "text": "国网基建部如何确保考试准入制度严格执行,并通过各单位的协作完成相关任务?", + "label": "知识问答" + }, + { + "text": "在试验中,操作人员未保持足够的安全距离会被归为哪类隐患?", + "label": "知识问答" + }, + { + "text": "请描述初步设计评审工作从计划制定到批复执行的全过程。", + "label": "知识问答" + }, + { + "text": "通报报告制度与行文制度如何支持公司安委会的决策和部署?", + "label": "知识问答" + }, + { + "text": "培训中如何平衡作业班组正常工作与培训任务的关系,避免影响现场工作进度?", + "label": "知识问答" + }, + { + "text": "在培训过程中,如何加强对施工作业现场的安全管控?", + "label": "知识问答" + }, + { + "text": "为什么机械或车辆在开挖基础边缘停放会被归类为 II 类隐患?", + "label": "知识问答" + }, + { + "text": "新技术、新设备、新工艺的应用需要在评审中体现哪些内容?", + "label": "知识问答" + }, + { + "text": "公司安委会的主要职能是什么?", + "label": "知识问答" + }, + { + "text": "在手册执行过程中,各单位如何反馈意见或建议?", + "label": "知识问答" + }, + { + "text": "为什么接地线挂设未使用专用线夹会被列为 I 类隐患?", + "label": "知识问答" + }, + { + "text": "如何确保远程视频评审形式的评审质量和数据安全?", + "label": "知识问答" + }, + { + "text": "14. 遇到六级及以上的大风、暴雨、大雪、大雾等恶劣天气时,为什么要停止起重吊装作业?", + "label": "知识问答" + }, + { + "text": "该培训计划的指导思想是如何体现习近平新时代中国特色社会主义思想的?", + "label": "知识问答" + }, + { + "text": "初步设计审定后,设计单位需在几天内向评审单位提交设计文件和概算书?", + "label": "知识问答" + }, + { + "text": "起重机吊具与带电体的最小安全距离未满足《安规》要求会被归为哪类隐患?", + "label": "知识问答" + } +] \ No newline at end of file diff --git a/generated_data/generated.py b/generated_data/generated.py index 6d5dcb9..231d6aa 100644 --- a/generated_data/generated.py +++ b/generated_data/generated.py @@ -1,6 +1,7 @@ import json import os from itertools import product + # 目录路径 directory = "data" @@ -9,69 +10,101 @@ if not os.path.exists(directory): os.makedirs(directory) # 基础数据定义 BASE_DATA = { - "implementation_organizations": ["送电一分公司", "送电二分公司", "变电分公司", "建筑分公司", "消防分公司"], + # 实施组织 + "implementation_organizations": ["送电一分公司", "送电二分公司", "变电分公司", "消防分公司"], + # 工程性质 "project_types": ["基建", "技改大修", "用户工程", "小型基建"], + # 工程名 "project_names": [ - "国网北京检修公司2024年±500kV延庆换流站直流主设备年度检修维护", - "合肥二电厂-彭郢π入长临河变电站220kV线路工程" + "1号工程", + "淮南芦集改造工程", + "第十号工程", + "合肥二电厂220kV线路工程", + "九号工程", ], - "construction_units": ["国网安徽省电力有限公司建设分公司", "国网安徽省电力有限公司马鞍山供电公司", "中铁二局集团电务工程有限公司"], - "project_departments": ["第九项目管理部", "第十一项目管理部", "第八项目管理部"], + # 建管单位 + "construction_units": ["国网安徽省电力有限公司建设分公司", "国网安徽省电力有限公司马鞍山供电公司", + "中铁二局集团电务工程有限公司"], + # 项目部名称 + "project_departments": ["第9项目管理部", "第十一项目部", "第八项目管理部", "9号项目部"], + # 项目经理 "project_managers": ["陈少平项目经理", "范文立项目经理", "何东洋项目经理"], - + # 分包单位 "subcontractors": ["安徽劦力建筑装饰有限责任公司", "安徽苏亚建设集团有限公司"], + # 班组名称 + "team_names": ["张朵班组", "刘梁玉班组", "魏玉龙班组"], + # 班组长 "team_leaders": ["李元帅班组长", "刘雨豪班组长"], - "risk_levels": ["1级", "2级", "3级", "4级", "5级"], - "pages": ["风险管控", "日计划", "周风险" ,"日计划统计报表","日计划推送"], - "operatings": ["8+2工况","8加2工况"] + # 风险等级 + "risk_levels": ["1级", "一级", "二级", "5级", "四级"], + # 8+2工况 + "operatings": ["8+2工况", "8加2工况"], + # 页面切换 + "pages": ["风险管控", "日计划", "周风险", "日计划统计报表", "日计划推送"] + } # 自然语言模板配置 TEMPLATE_CONFIG = { "日计划数量查询": { - "date": ["今日", "昨日", "2024年5月24日", "5月24日","今天","昨天"], + "date": ["今日", "昨日", "2024年5月24日", "5月24日", "今天", "昨天"], "templates": [ ("{date}{project_name}有多少作业计划?", ["date", "project_name"]), - ("{project_name}{date}有多少作业计划?", ["project_name","date"]), - ("{date}{project_type}类的作业计划有多少?", ["date", "project_type"]), + ("{project_name}{date}有多少项作业计划?", ["project_name", "date"]), + ("工程性质是{project_type}{date}有多少作业计划?", ["project_type", "date"]), ("{date}风险等级为{risk_level}的作业计划有多少?", ["date", "risk_level"]), ("{date}工程性质为{project_type}的有多少作业计划?", ["date", "project_type"]), - ("工程性质为{project_type}的{date}有多少作业计划?", ["project_type", "date"]), - ("查询{project_name}在{date}的作业计划有多少?", ["project_name", "date"]), + ("工程性质为{project_type}{date}有多少作业计划?", ["project_type", "date"]), + ("查询{project_name}在{date}的作业计划数量", ["project_name", "date"]), ("{date}{project_type}类作业计划有多少?", ["date", "project_type"]), - ("{project_type}类{date}作业计划有多少?", ["date", "project_type"]), + ("{project_type}类{date}作业计划有多少?", ["project_type", "date"]), ("{construction_unit}在{date}有多少作业计划?", ["construction_unit", "date"]), ("{date}{construction_unit}有多少作业计划?", ["date", "construction_unit"]), ("{date}有多少作业计划?", ["date"]), ("公司{date}有多少作业计划?", ["date"]), - ("{date}属于{operating}有多少作业计划?", ["date","operating"]), + ("{date}属于{operating}有多少作业计划?", ["date", "operating"]), ("{date}{implementation_organization}有多少作业计划?", ["date", "implementation_organization"]), ("{date}{project_department}有多少作业计划?", ["date", "project_department"]), + ("{project_department}{date}有多少{risk_level}风险作业计划?", ["project_department", "date", "risk_level"]), ("{date}{project_manager}有多少作业计划?", ["date", "project_manager"]), ("{date}{subcontractor}有多少作业计划?", ["date", "subcontractor"]), ("{date}{team_leader}有多少作业计划?", ["date", "team_leader"]), ("{date}风险等级为{risk_level}的作业计划有多少?", ["date", "risk_level"]), + ("{date}{project_department}有多少{risk_level}风险作业计划?", ["date", "project_department", "risk_level"]), - ("{date}{project_type}类中,风险等级为{risk_level}的作业计划有多少?",["date", "project_type", "risk_level"]), - ("{date}{construction_unit}中,风险等级为{risk_level}的计划有多少?",["date", "construction_unit", "risk_level"]), + ("{date}{project_type}类风险等级为{risk_level}的作业计划有多少?", ["date", "project_type", "risk_level"]), + ("{date}{construction_unit}有多少{risk_level}风险作业计划?", ["date", "construction_unit", "risk_level"]), - ("{date}{project_type}类中,由{construction_unit}负责的作业计划有多少?",["date", "project_type", "construction_unit"]), - ("{date}{project_type}类中,由{implementation_organization}组织实施的作业计划有多少?",["date", "project_type", "implementation_organization"]), - ("{date}{project_department}管理的{project_type}类作业计划有多少?",["date", "project_department", "project_type"]), - ("{date}{subcontractor}承包的{project_type}类作业计划有多少?",["date", "subcontractor", "project_type"]), - ("{date}{project_manager}负责的{project_type}类作业计划有多少?",["date", "project_manager", "project_type"]), + ("{date}{project_type}类{construction_unit}负责的作业计划有多少?", + ["date", "project_type", "construction_unit"]), + ("{date}{project_type}类{implementation_organization}组织实施的作业计划有多少?", + ["date", "project_type", "implementation_organization"]), + ("{date}{project_department}管理的{project_type}类作业计划有多少?", + ["date", "project_department", "project_type"]), + ("{date}{subcontractor}承包的{project_type}类作业计划有多少?", ["date", "subcontractor", "project_type"]), + ("{date}{project_manager}负责的{project_type}类作业计划有多少?", + ["date", "project_manager", "project_type"]), ("{date}{team_leader}带领的{project_type}类作业计划有多少?", ["date", "team_leader", "project_type"]), - ("{date}{project_name}由{project_manager}作业计划有多少?",["date", "project_name", "project_manager"]), + ("{date}{project_name}由{project_manager}作业计划有多少?", ["date", "project_name", "project_manager"]), ("{date}{project_name}中,风险等级为{risk_level}的作业计划有多少?", ["date", "project_name", "risk_level"]), - ("{date}{project_manager}作业计划有多少?", ["date","project_manager"]), + ("{date}{project_manager}作业计划有多少?", ["date", "project_manager"]), ("{project_manager}在{date}作业计划有多少?", ["project_manager", "date"]), + + ("{date}{project_manager}的作业计划数量", ["date", "project_manager"]), + ("{project_manager}在{date}的作业计划数量", ["project_manager", "date"]), + + # 班组 + ("{date}{team_name}有多少项作业计划?", ["date", "team_name"]), + ("{team_name}{date}有多少作业计划?", ["team_name", "date"]), + ("{team_name}{date}作业计划数量", ["team_name", "date"]), + ("{date}{team_name}作业计划数量", ["date", "team_name"]), ] }, "周计划数量查询": { - "date": ["本周", "上周","上一周", "下周", "下一周", "最近一周", "本周内", "这一周"], + "date": ["本周", "上周", "上一周", "下周", "下一周", "最近一周", "本周内", "这一周"], "templates": [ ("{date}{project_name}作业计划有多少?", ["date", "project_name"]), ("{project_name}{date}作业计划有多少?", ["project_name", "date"]), @@ -80,7 +113,7 @@ TEMPLATE_CONFIG = { ("{date}作业计划有多少?", ["date"]), # 🎯 date + 其他单个维度 - ("{date}{project_name}有多少作业计划?", ["date", "project_name"]), + ("{date}{project_name}有多少项作业计划?", ["date", "project_name"]), ("{date}{construction_unit}作业计划有多少?", ["date", "construction_unit"]), ("{date}{implementation_organization}作业计划有多少?", ["date", "implementation_organization"]), @@ -89,33 +122,45 @@ TEMPLATE_CONFIG = { ("{date}{subcontractor}作业计划有多少?", ["date", "subcontractor"]), ("{date}{team_leader}作业计划有多少?", ["date", "team_leader"]), + ("{date}{project_department}作业计划数量", ["date", "project_department"]), + ("{date}{subcontractor}作业计划数量?", ["date", "subcontractor"]), + # 🎯 date + 风险维度 - ("{date}风险等级为{risk_level}的作业计划有多少?", ["date", "risk_level"]), + ("{date}有多少{risk_level}风险作业计划?", ["date", "risk_level"]), # 🎯 date + construction_unit + risk_level - ("{date}{construction_unit}风险等级为{risk_level}的作业计划有多少?", ["date", "construction_unit", "risk_level"]), + ("{construction_unit}{date}有多少项{risk_level}风险作业计划", ["construction_unit", "date", "risk_level"]), # 🎯 date + implementation_organization + risk_level - ("{date}{implementation_organization}风险等级为{risk_level}的作业计划有多少?",["date", "implementation_organization", "risk_level"]), + ("{date}{implementation_organization}风险等级为{risk_level}的作业计划有多少?", + ["date", "implementation_organization", "risk_level"]), # 🎯 date + project_name + project_manager ("{date}{project_name}{project_manager}负责的作业计划有多少?", ["date", "project_name", "project_manager"]), # 🎯 date + project_name + risk_level - ("{date}{project_name}中,风险等级为{risk_level}的作业计划有多少?", ["date", "project_name", "risk_level"]), + ("{date}{project_name}有多少项{risk_level}风险作业计划?", ["date", "project_name", "risk_level"]), # 🎯 project_manager 维度 + ("{project_manager}{date}作业计划数量?", ["project_manager", "date"]), ("{project_manager}在{date}作业计划有多少?", ["project_manager", "date"]), - ("{project_manager}在{date}负责的风险等级为{risk_level}的作业计划有多少?", ["project_manager", "date", "risk_level"]), + ("{project_manager}在{date}负责的风险等级为{risk_level}的作业计划有多少?", + ["project_manager", "date", "risk_level"]), + + ("{date}{team_name}有多少项作业计划?", ["date", "team_name"]), + ("{team_name}{date}有多少作业计划?", ["team_name", "date"]), + ("{team_name}{date}作业计划数量", ["team_name", "date"]), + ("{date}{team_name}的作业计划数量", ["date", "team_name"]), ] }, "日计划作业内容": { - "date": ["今日", "昨日", "2024年5月24日", "5月24日","今天","昨天"], + "date": ["今日", "昨日", "2024年5月24日", "5月24日", "今天", "昨天"], "templates": [ ("{date}{project_name}作业内容是什么?", ["date", "project_name"]), ("{project_name}在{date}作业内容是什么", ["project_name", "date"]), ("{date}{project_type}类作业内容是什么?", ["date", "project_type"]), + ("{project_type}类{date}作业内容是什么?", ["project_type", "date"]), ("{date}工程性质为{project_type}的作业内容是什么?", ["date", "project_type"]), ("工程性质为{project_type}的{date}作业内容是什么?", ["project_type", "date"]), ("{construction_unit}在{date}作业内容是什么?", ["construction_unit", "date"]), @@ -125,6 +170,10 @@ TEMPLATE_CONFIG = { # 3. 查询特定日期和项目类型的工程计划 ("{date}{project_type}类计划作业内容是什么?", ["date", "project_type"]), + ("{date}{construction_unit}{risk_level}风险的作业内容是什么?", ["date", "construction_unit", "risk_level"]), + + ("{date}{implementation_organization}{risk_level}风险的作业内容是什么?", + ["date", "implementation_organization", "risk_level"]), # 5. 查询特定日期和项目经理的任务安排 ("{project_manager}在{date}作业内容是什么?", ["project_manager", "date"]), @@ -139,11 +188,13 @@ TEMPLATE_CONFIG = { ("{team_leader}在{date}作业内容是什么?", ["team_leader", "date"]), # 9. 查询特定日期和项目类型下的高风险任务 - ("{date}的{project_type}类中,风险等级为{risk_level}的作业内容是什么?", ["date", "project_type", "risk_level"]), + ("{date}的{project_type}类风险等级为{risk_level}的作业内容是什么?", ["date", "project_type", "risk_level"]), # 10. 查询特定日期和风险等级的任务安排 ("{date}风险等级为{risk_level}的作业内容是什么?", ["date", "risk_level"]), + ("{date}有多少项{risk_level}风险作业计划?", ["date", "risk_level"]), + # 11. 查询特定日期和施工单位的任务进展 ("{construction_unit}在{date}作业内容是什么?", ["construction_unit", "date"]), @@ -151,17 +202,21 @@ TEMPLATE_CONFIG = { ("{project_manager}在{date}作业内容是什么?", ["project_manager", "date"]), # 13. 查询特定日期和项目经理的高风险任务 - ("{project_manager}在{date}的风险等级为{risk_level}的作业内容是什么?", ["project_manager", "date", "risk_level"]), + ("{project_manager}在{date}的风险等级为{risk_level}的作业内容是什么?", + ["project_manager", "date", "risk_level"]), # 15. 查询特定日期和所有任务安排 ("{date}作业内容是什么?", ["date"]), # 16. 查询特定日期和项目进度 ("{date}{project_name}作业内容是什么?", ["date", "project_name"]), -] + # 班组 + ("{date}{team_name}作业内容是什么?", ["date", "team_name"]), + ("{team_name}{date}作业内容", ["team_name", "date"]), + ] }, "周计划作业内容": { - "date": ["本周", "上周","上一周", "下周", "下一周", "最近一周", "本周内", "这一周"], + "date": ["本周", "上周", "上一周", "下周", "下一周", "最近一周", "本周内", "这一周"], "templates": [ ("工程性质为{project_type}在{date}作业内容是什么?", ["project_type", "date"]), ("{date}工程性质为{project_type}作业内容是什么?", ["date", "project_type"]), @@ -172,25 +227,27 @@ TEMPLATE_CONFIG = { # 4. 查询某项目在指定周的所有作业计划 ("{project_name}在{date}作业内容是什么?", ["project_name", "date"]), - + # 5. 查询指定周的所有项目类型作业内容 ("{date}{project_type}类作业内容是什么?", ["date", "project_type"]), - + # 6. 查询某施工单位在指定周的作业任务 ("{construction_unit}在{date}作业内容是什么?", ["construction_unit", "date"]), - + # 7. 查询某项目经理在指定周负责的作业内容 ("{project_manager}在{date}作业内容是什么?", ["project_manager", "date"]), - + # 8. 查询某团队负责人在指定周的作业安排 ("{team_leader}在{date}作业内容是什么?", ["team_leader", "date"]), - + # 9. 查询某项目类型在指定周的高风险作业内容 - ("{date}的{project_type}类中,风险等级为{risk_level}的作业内容是什么?", ["date", "project_type", "risk_level"]), - + ("{date}的{project_type}类并且风险等级为{risk_level}的作业内容是什么?", + ["date", "project_type", "risk_level"]), + # 10. 查询某风险等级在指定周的作业内容 ("{date}风险等级为{risk_level}的作业内容是什么?", ["date", "risk_level"]), - + ("{date}{risk_level}风险的作业内容是什么?", ["date", "risk_level"]), + # 11. 查询某施工单位在指定周的作业进展 ("{construction_unit}在{date}作业内容是什么?", ["construction_unit", "date"]), @@ -199,10 +256,13 @@ TEMPLATE_CONFIG = { # 15. 查询某项目部门在指定周的作业安排 ("{project_department}在{date}作业内容是什么?", ["project_department", "date"]), -] + + ("{date}{team_name}作业内容是什么", ["date", "team_name"]), + ("{team_name}{date}作业内容", ["team_name", "date"]), + ] }, "施工人数": { - "date": ["今日", "昨日", "2024年5月24日", "5月24日","今天","昨天"], + "date": ["今日", "昨日", "2024年5月24日", "5月24日", "今天", "昨天"], "templates": [ ("{date}{project_name}施工人员有多少?", ["date", "project_name"]), ("{date}{project_name}施工人数是多少?", ["date", "project_name"]), @@ -235,14 +295,12 @@ TEMPLATE_CONFIG = { ("{date}{team_leader}的施工人员有多少?", ["date", "team_leader"]), ("{date}{team_leader}的施工人数是多少?", ["date", "team_leader"]), - # 11. 查询某实施单位在指定日期的施工人员总数 ("{implementation_organization}{date}的施工人数是多少?", ["implementation_organization", "date"]), ("{implementation_organization}{date}的施工人员有多少?", ["implementation_organization", "date"]), ("{date}{team_leader}的施工人员有多少?", ["date", "team_leader"]), ("{date}{team_leader}的施工人数是多少?", ["date", "team_leader"]), - # 16. 统计某项目部门在指定日期的施工人员数量 ("{project_department}{date}的施工人员有多少?", ["project_department", "date"]), ("{project_department}{date}的施工人数是多少?", ["project_department", "date"]), @@ -254,7 +312,13 @@ TEMPLATE_CONFIG = { ("{subcontractor}{date}的施工人数是多少?", ["subcontractor", "date"]), # 22. 统计某施工单位在指定周的高风险作业人员数量 - ("{construction_unit}{date}风险等级为{risk_level}的施工人数是多少?", ["construction_unit", "date", "risk_level"]), + ("{construction_unit}{date}风险等级为{risk_level}的施工人数是多少?", + ["construction_unit", "date", "risk_level"]), + + ("{date}{team_name}施工人数是多少", ["date", "team_name"]), + ("{date}{team_name}施工人数", ["date", "team_name"]), + ("{team_name}{date}施工人数是多少", ["team_name", "date"]), + ("{team_name}{date}施工人数", ["team_name", "date"]), ] }, @@ -284,11 +348,13 @@ TEMPLATE_CONFIG = { # 11. 查询某分包商在指定周的出勤情况 ("{subcontractor}在{date}的出勤情况如何?", ["subcontractor", "date"]), + + ("{date}{team_name}考勤人数是多少", ["date", "team_name"]), + ("{team_name}{date}考勤人数", ["team_name", "date"]), ] }, "页面切换": { - "date": ["本周", "上周", "过去一周", "最近一周", "本周内", "这一周", "上个星期", "这个星期", "今日", "昨日", - "2024年5月24日", "5月24日", "24日", "周一"], + "date": ["今日", "昨日", "2024年5月24日", "5月24日", "今天", "昨天"], "templates": [ ("打开{page}页面", ["page"]), ("打开{page}", ["page"]), @@ -296,24 +362,18 @@ TEMPLATE_CONFIG = { ("进入{page}", ["page"]), ("进入{page}模块", ["page"]), ("进入{page}页面", ["page"]), - ("查看{page}", ["page"]), - ("查看{page}模块", ["page"]), - ("查看{page}页面", ["page"]), ("跳转到{page}", ["page"]), ("跳转到{page}模块", ["page"]), ("跳转到{page}页面", ["page"]), ("访问{page}页面", ["page"]), ("访问{page}模块", ["page"]), ("访问{page}", ["page"]), - ("显示{page}模块", ["page"]), - ("显示{page}", ["page"]), + ("请打开{page}模块", ["page"]), + ("请打开{page}", ["page"]), ("显示{page}页面", ["page"]), ("加载{page}模块", ["page"]), ("加载{page}", ["page"]), ("加载{page}页面", ["page"]), - ("查询{page}模块", ["page"]), - ("查询{page}", ["page"]), - ("查询{page}页面", ["page"]), ] } } @@ -334,7 +394,8 @@ def generate_natural_samples(config, label): "project_department": BASE_DATA["project_departments"], "project_manager": BASE_DATA["project_managers"], "page": BASE_DATA["pages"], - "operating": BASE_DATA["operatings"] + "operating": BASE_DATA["operatings"], + "team_name": BASE_DATA["team_names"] } for template, variables in config["templates"]: diff --git a/generated_data/按比例分配ernie数据.py b/generated_data/按比例分配ernie数据.py index 90f6914..283511f 100644 --- a/generated_data/按比例分配ernie数据.py +++ b/generated_data/按比例分配ernie数据.py @@ -1,5 +1,6 @@ import json import os +import random # 目录路径 directory = "output/ernie" @@ -25,16 +26,16 @@ def load_json(file_path): def convert_data_format(data): converted_list = [] for item in data: - if "text" in item and "prompt" in item: + if "text" in item and "label" in item: converted_list.append({ "text": item["text"], - "label": item["prompt"] # prompt → label + "label": item["label"] # prompt → label }) return converted_list -# 按 7:3 比例分割 JSON 数据 -def split_json(input_file, output_file1, output_file2): +# 随机按 7:3 比例分割 JSON 数据 +def split_json_random(input_file, output_file1, output_file2): # 读取数据 data = load_json(input_file) @@ -46,12 +47,15 @@ def split_json(input_file, output_file1, output_file2): # 转换数据格式 converted_data = convert_data_format(data) + # 打乱数据顺序 + random.shuffle(converted_data) + # 计算数据的分割点(7:3) - split_point = int(len(converted_data) * 0.8) + split_point = int(len(converted_data) * 0.7) # 按比例分割数据 - data_part1 = converted_data[:split_point] # 前 70% 数据 - data_part2 = converted_data[split_point:] # 后 30% 数据 + data_part1 = converted_data[:split_point] # 70% 训练数据 + data_part2 = converted_data[split_point:] # 30% 验证数据 # 保存数据到两个文件 with open(output_file1, 'w', encoding='utf-8') as f1: @@ -60,8 +64,7 @@ def split_json(input_file, output_file1, output_file2): with open(output_file2, 'w', encoding='utf-8') as f2: json.dump(data_part2, f2, ensure_ascii=False, indent=4) - print( - f"数据已转换并按 7:3 比例分割,保存至:\n - {output_file1}({len(data_part1)} 条)\n - {output_file2}({len(data_part2)} 条)") + print(f"数据已随机打乱并按 7:3 分割,保存至:\n - {output_file1}({len(data_part1)} 条)\n - {output_file2}({len(data_part2)} 条)") # 输入的 JSON 文件路径 @@ -70,5 +73,5 @@ input_file = 'output/merged_data.json' output_file1 = 'output/ernie/train.json' output_file2 = 'output/ernie/val.json' -# 执行数据转换和分割 -split_json(input_file, output_file1, output_file2) +# 执行数据转换和随机分割 +split_json_random(input_file, output_file1, output_file2) diff --git a/uie/1.py b/uie/1.py deleted file mode 100644 index 7e91200..0000000 --- a/uie/1.py +++ /dev/null @@ -1,39 +0,0 @@ -import json - - -# 读取 JSON 文件 -def load_json(file_path): - with open(file_path, 'r', encoding='utf-8') as f: - return json.load(f) - - -# 按7:3比例将一个JSON文件分成两个 -def split_json(input_file, output_file1, output_file2): - # 读取数据 - data = load_json(input_file) - - # 计算数据的分割点 - split_point = int(len(data) * 0.7) - - # 按比例分割数据 - data_part1 = data[:split_point] # 前70%数据 - data_part2 = data[split_point:] # 后30%数据 - - # 保存数据到两个文件 - with open(output_file1, 'w', encoding='utf-8') as f1: - json.dump(data_part1, f1, ensure_ascii=False, indent=4) - - with open(output_file2, 'w', encoding='utf-8') as f2: - json.dump(data_part2, f2, ensure_ascii=False, indent=4) - - print(f"数据已按 7:3 比例分割并保存到 {output_file1} 和 {output_file2}") - - -# 输入的 JSON 文件路径 -input_file = 'merged_data.json' -# 输出的两个文件路径 -output_file1 = 'data_part1.json' -output_file2 = 'data_part2.json' - -# 按 7:3 比例分割并保存 -split_json(input_file, output_file1, output_file2) diff --git a/uie/data.yaml b/uie/data.yaml index 873b038..8a5b18c 100644 --- a/uie/data.yaml +++ b/uie/data.yaml @@ -1,4 +1,4 @@ -labels: ['date', 'project_name', 'project_type', 'construction_unit','implementation_organization', 'project_department', 'project_manager','subcontractor', 'team_leader', 'risk_level','page'] # 类别名称 +labels: ['date', 'project_name', 'project_type', 'construction_unit','implementation_organization', 'project_department', 'project_manager','subcontractor', 'team_leader', 'risk_level','page','operating'] # 类别名称 # Model configuration for selecting the pretrained model and other model-related settings diff --git a/uie/saved_model_static.json b/uie/saved_model_static.json deleted file mode 100644 index 8719544..0000000 --- a/uie/saved_model_static.json +++ /dev/null @@ -1 +0,0 @@ -{"base_code":{"magic":"pir","trainable":true,"version":1},"program":{"regions":[{"#":"region_0","blocks":[{"#":"block_0","args":[],"ops":[{"#":"p","A":[0,1,1,"linear_73.b_0"],"DA":[],"O":{"%":1,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[21],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_73.w_0"],"DA":[],"O":{"%":2,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,21],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_72.b_0"],"DA":[],"O":{"%":3,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_72.w_0"],"DA":[],"O":{"%":4,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_24.b_0"],"DA":[],"O":{"%":5,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_24.w_0"],"DA":[],"O":{"%":6,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_23.b_0"],"DA":[],"O":{"%":7,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_23.w_0"],"DA":[],"O":{"%":8,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_71.b_0"],"DA":[],"O":{"%":9,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_71.w_0"],"DA":[],"O":{"%":10,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_70.b_0"],"DA":[],"O":{"%":11,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_70.w_0"],"DA":[],"O":{"%":12,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_69.b_0"],"DA":[],"O":{"%":13,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_69.w_0"],"DA":[],"O":{"%":14,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_68.b_0"],"DA":[],"O":{"%":15,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_68.w_0"],"DA":[],"O":{"%":16,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_67.b_0"],"DA":[],"O":{"%":17,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_67.w_0"],"DA":[],"O":{"%":18,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_66.b_0"],"DA":[],"O":{"%":19,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_66.w_0"],"DA":[],"O":{"%":20,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_22.b_0"],"DA":[],"O":{"%":21,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_22.w_0"],"DA":[],"O":{"%":22,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_21.b_0"],"DA":[],"O":{"%":23,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_21.w_0"],"DA":[],"O":{"%":24,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_65.b_0"],"DA":[],"O":{"%":25,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_65.w_0"],"DA":[],"O":{"%":26,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_64.b_0"],"DA":[],"O":{"%":27,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_64.w_0"],"DA":[],"O":{"%":28,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_63.b_0"],"DA":[],"O":{"%":29,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_63.w_0"],"DA":[],"O":{"%":30,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_62.b_0"],"DA":[],"O":{"%":31,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_62.w_0"],"DA":[],"O":{"%":32,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_61.b_0"],"DA":[],"O":{"%":33,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_61.w_0"],"DA":[],"O":{"%":34,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_60.b_0"],"DA":[],"O":{"%":35,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_60.w_0"],"DA":[],"O":{"%":36,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_20.b_0"],"DA":[],"O":{"%":37,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_20.w_0"],"DA":[],"O":{"%":38,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_19.b_0"],"DA":[],"O":{"%":39,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_19.w_0"],"DA":[],"O":{"%":40,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_59.b_0"],"DA":[],"O":{"%":41,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_59.w_0"],"DA":[],"O":{"%":42,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_58.b_0"],"DA":[],"O":{"%":43,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_58.w_0"],"DA":[],"O":{"%":44,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_57.b_0"],"DA":[],"O":{"%":45,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_57.w_0"],"DA":[],"O":{"%":46,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_56.b_0"],"DA":[],"O":{"%":47,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_56.w_0"],"DA":[],"O":{"%":48,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_55.b_0"],"DA":[],"O":{"%":49,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_55.w_0"],"DA":[],"O":{"%":50,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_54.b_0"],"DA":[],"O":{"%":51,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_54.w_0"],"DA":[],"O":{"%":52,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_18.b_0"],"DA":[],"O":{"%":53,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_18.w_0"],"DA":[],"O":{"%":54,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_17.b_0"],"DA":[],"O":{"%":55,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_17.w_0"],"DA":[],"O":{"%":56,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_53.b_0"],"DA":[],"O":{"%":57,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_53.w_0"],"DA":[],"O":{"%":58,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_52.b_0"],"DA":[],"O":{"%":59,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_52.w_0"],"DA":[],"O":{"%":60,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_51.b_0"],"DA":[],"O":{"%":61,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_51.w_0"],"DA":[],"O":{"%":62,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_50.b_0"],"DA":[],"O":{"%":63,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_50.w_0"],"DA":[],"O":{"%":64,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_49.b_0"],"DA":[],"O":{"%":65,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_49.w_0"],"DA":[],"O":{"%":66,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_48.b_0"],"DA":[],"O":{"%":67,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_48.w_0"],"DA":[],"O":{"%":68,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_16.b_0"],"DA":[],"O":{"%":69,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_16.w_0"],"DA":[],"O":{"%":70,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_15.b_0"],"DA":[],"O":{"%":71,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_15.w_0"],"DA":[],"O":{"%":72,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_47.b_0"],"DA":[],"O":{"%":73,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_47.w_0"],"DA":[],"O":{"%":74,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_46.b_0"],"DA":[],"O":{"%":75,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_46.w_0"],"DA":[],"O":{"%":76,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_45.b_0"],"DA":[],"O":{"%":77,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_45.w_0"],"DA":[],"O":{"%":78,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_44.b_0"],"DA":[],"O":{"%":79,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_44.w_0"],"DA":[],"O":{"%":80,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_43.b_0"],"DA":[],"O":{"%":81,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_43.w_0"],"DA":[],"O":{"%":82,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_42.b_0"],"DA":[],"O":{"%":83,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_42.w_0"],"DA":[],"O":{"%":84,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_14.b_0"],"DA":[],"O":{"%":85,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_14.w_0"],"DA":[],"O":{"%":86,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_13.b_0"],"DA":[],"O":{"%":87,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_13.w_0"],"DA":[],"O":{"%":88,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_41.b_0"],"DA":[],"O":{"%":89,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_41.w_0"],"DA":[],"O":{"%":90,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_40.b_0"],"DA":[],"O":{"%":91,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_40.w_0"],"DA":[],"O":{"%":92,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_39.b_0"],"DA":[],"O":{"%":93,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_39.w_0"],"DA":[],"O":{"%":94,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_38.b_0"],"DA":[],"O":{"%":95,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_38.w_0"],"DA":[],"O":{"%":96,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_37.b_0"],"DA":[],"O":{"%":97,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_37.w_0"],"DA":[],"O":{"%":98,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_36.b_0"],"DA":[],"O":{"%":99,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_36.w_0"],"DA":[],"O":{"%":100,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_12.b_0"],"DA":[],"O":{"%":101,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_12.w_0"],"DA":[],"O":{"%":102,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_11.b_0"],"DA":[],"O":{"%":103,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_11.w_0"],"DA":[],"O":{"%":104,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_35.b_0"],"DA":[],"O":{"%":105,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_35.w_0"],"DA":[],"O":{"%":106,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_34.b_0"],"DA":[],"O":{"%":107,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_34.w_0"],"DA":[],"O":{"%":108,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_33.b_0"],"DA":[],"O":{"%":109,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_33.w_0"],"DA":[],"O":{"%":110,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_32.b_0"],"DA":[],"O":{"%":111,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_32.w_0"],"DA":[],"O":{"%":112,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_31.b_0"],"DA":[],"O":{"%":113,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_31.w_0"],"DA":[],"O":{"%":114,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_30.b_0"],"DA":[],"O":{"%":115,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_30.w_0"],"DA":[],"O":{"%":116,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_10.b_0"],"DA":[],"O":{"%":117,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_10.w_0"],"DA":[],"O":{"%":118,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_9.b_0"],"DA":[],"O":{"%":119,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_9.w_0"],"DA":[],"O":{"%":120,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_29.b_0"],"DA":[],"O":{"%":121,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_29.w_0"],"DA":[],"O":{"%":122,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_28.b_0"],"DA":[],"O":{"%":123,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_28.w_0"],"DA":[],"O":{"%":124,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_27.b_0"],"DA":[],"O":{"%":125,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_27.w_0"],"DA":[],"O":{"%":126,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_26.b_0"],"DA":[],"O":{"%":127,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_26.w_0"],"DA":[],"O":{"%":128,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_25.b_0"],"DA":[],"O":{"%":129,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_25.w_0"],"DA":[],"O":{"%":130,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_24.b_0"],"DA":[],"O":{"%":131,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_24.w_0"],"DA":[],"O":{"%":132,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_8.b_0"],"DA":[],"O":{"%":133,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_8.w_0"],"DA":[],"O":{"%":134,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_7.b_0"],"DA":[],"O":{"%":135,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_7.w_0"],"DA":[],"O":{"%":136,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_23.b_0"],"DA":[],"O":{"%":137,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_23.w_0"],"DA":[],"O":{"%":138,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_22.b_0"],"DA":[],"O":{"%":139,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_22.w_0"],"DA":[],"O":{"%":140,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_21.b_0"],"DA":[],"O":{"%":141,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_21.w_0"],"DA":[],"O":{"%":142,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_20.b_0"],"DA":[],"O":{"%":143,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_20.w_0"],"DA":[],"O":{"%":144,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_19.b_0"],"DA":[],"O":{"%":145,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_19.w_0"],"DA":[],"O":{"%":146,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_18.b_0"],"DA":[],"O":{"%":147,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_18.w_0"],"DA":[],"O":{"%":148,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_6.b_0"],"DA":[],"O":{"%":149,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_6.w_0"],"DA":[],"O":{"%":150,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_5.b_0"],"DA":[],"O":{"%":151,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_5.w_0"],"DA":[],"O":{"%":152,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_17.b_0"],"DA":[],"O":{"%":153,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_17.w_0"],"DA":[],"O":{"%":154,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_16.b_0"],"DA":[],"O":{"%":155,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_16.w_0"],"DA":[],"O":{"%":156,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_15.b_0"],"DA":[],"O":{"%":157,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_15.w_0"],"DA":[],"O":{"%":158,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_14.b_0"],"DA":[],"O":{"%":159,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_14.w_0"],"DA":[],"O":{"%":160,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_13.b_0"],"DA":[],"O":{"%":161,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_13.w_0"],"DA":[],"O":{"%":162,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_12.b_0"],"DA":[],"O":{"%":163,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_12.w_0"],"DA":[],"O":{"%":164,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_4.b_0"],"DA":[],"O":{"%":165,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_4.w_0"],"DA":[],"O":{"%":166,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_3.b_0"],"DA":[],"O":{"%":167,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_3.w_0"],"DA":[],"O":{"%":168,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_11.b_0"],"DA":[],"O":{"%":169,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_11.w_0"],"DA":[],"O":{"%":170,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_10.b_0"],"DA":[],"O":{"%":171,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_10.w_0"],"DA":[],"O":{"%":172,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_9.b_0"],"DA":[],"O":{"%":173,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_9.w_0"],"DA":[],"O":{"%":174,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_8.b_0"],"DA":[],"O":{"%":175,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_8.w_0"],"DA":[],"O":{"%":176,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_7.b_0"],"DA":[],"O":{"%":177,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_7.w_0"],"DA":[],"O":{"%":178,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_6.b_0"],"DA":[],"O":{"%":179,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_6.w_0"],"DA":[],"O":{"%":180,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_2.b_0"],"DA":[],"O":{"%":181,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_2.w_0"],"DA":[],"O":{"%":182,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_1.b_0"],"DA":[],"O":{"%":183,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_1.w_0"],"DA":[],"O":{"%":184,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_5.b_0"],"DA":[],"O":{"%":185,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_5.w_0"],"DA":[],"O":{"%":186,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_4.b_0"],"DA":[],"O":{"%":187,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_4.w_0"],"DA":[],"O":{"%":188,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,3072],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_3.b_0"],"DA":[],"O":{"%":189,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_3.w_0"],"DA":[],"O":{"%":190,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_2.b_0"],"DA":[],"O":{"%":191,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_2.w_0"],"DA":[],"O":{"%":192,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_1.b_0"],"DA":[],"O":{"%":193,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_1.w_0"],"DA":[],"O":{"%":194,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_0.b_0"],"DA":[],"O":{"%":195,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"linear_0.w_0"],"DA":[],"O":{"%":196,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_0.b_0"],"DA":[],"O":{"%":197,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"layer_norm_0.w_0"],"DA":[],"O":{"%":198,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"embedding_3.w_0"],"DA":[],"O":{"%":199,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[3,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"embedding_2.w_0"],"DA":[],"O":{"%":200,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[4,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"embedding_1.w_0"],"DA":[],"O":{"%":201,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[2048,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"p","A":[0,1,1,"embedding_0.w_0"],"DA":[],"O":{"%":202,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[40000,768],"NCHW",[],0]}},"OA":[1,0,1],"QA":[]},{"#":"1.data","A":[{"AT":{"#":"0.a_str","D":"input_ids"},"N":"name"},{"AT":{"#":"1.a_intarray","D":[-1,512]},"N":"shape"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[0,0,""]},"N":"place"}],"I":[],"O":[{"%":203,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.data","A":[{"AT":{"#":"0.a_str","D":"token_type_ids"},"N":"name"},{"AT":{"#":"1.a_intarray","D":[-1,512]},"N":"shape"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[0,0,""]},"N":"place"}],"I":[],"O":[{"%":204,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.data","A":[{"AT":{"#":"0.a_str","D":"position_ids"},"N":"name"},{"AT":{"#":"1.a_intarray","D":[-1,512]},"N":"shape"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[0,0,""]},"N":"place"}],"I":[],"O":[{"%":205,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.data","A":[{"AT":{"#":"0.a_str","D":"attention_mask"},"N":"name"},{"AT":{"#":"1.a_intarray","D":[-1,512]},"N":"shape"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[0,0,""]},"N":"place"}],"I":[],"O":[{"%":206,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":1},{"#":"0.a_i64","D":2}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/"},"N":"struct_name"}],"I":[],"O":[{"%":207,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[2],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.unsqueeze","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/"},"N":"struct_name"}],"I":[{"%":206},{"%":207}],"O":[{"%":208,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,1,1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":-1.0},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/"},"N":"struct_name"}],"I":[],"O":[{"%":209,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":1.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/"},"N":"struct_name"}],"I":[{"%":208},{"%":209}],"O":[{"%":210,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,1,1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":-10000.0},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/"},"N":"struct_name"}],"I":[],"O":[{"%":211,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/"},"N":"struct_name"}],"I":[{"%":210},{"%":211}],"O":[{"%":212,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,1,1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.embedding","A":[{"AT":{"#":"0.a_i64","D":0},"N":"padding_idx"},{"AT":{"#":"0.a_bool","D":false},"N":"sparse"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/Embedding/"},"N":"struct_name"}],"I":[{"%":203},{"%":202}],"O":[{"%":213,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.shape64","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":213}],"O":[{"%":214,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[],"O":[{"%":215,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":1}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[],"O":[{"%":216,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.slice","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0}]},"N":"axes"},{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":1}]},"N":"infer_flags"},{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0}]},"N":"decrease_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":214},{"%":215},{"%":216}],"O":[{"%":217,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.embedding","A":[{"AT":{"#":"0.a_i64","D":-1},"N":"padding_idx"},{"AT":{"#":"0.a_bool","D":false},"N":"sparse"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/Embedding_1/"},"N":"struct_name"}],"I":[{"%":205},{"%":201}],"O":[{"%":218,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":213},{"%":218}],"O":[{"%":219,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.embedding","A":[{"AT":{"#":"0.a_i64","D":-1},"N":"padding_idx"},{"AT":{"#":"0.a_bool","D":false},"N":"sparse"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/Embedding_2/"},"N":"struct_name"}],"I":[{"%":204},{"%":200}],"O":[{"%":220,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":219},{"%":220}],"O":[{"%":221,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[]},"N":"shape"},{"AT":{"#":"0.a_f64","D":512.0},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[],"O":[{"%":222,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"0.combine","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":217},{"%":222}],"O":[{"%":223,"TT":{"#":"0.t_vec","D":[{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[],"NCHW",[],0]},{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[],"NCHW",[],0]}]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.stack","A":[{"AT":{"#":"0.a_i32","D":0},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":223}],"O":[{"%":224,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[2],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":1.0},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[],"O":[{"%":225,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.full_with_tensor","A":[{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":225},{"%":224}],"O":[{"%":226,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.0},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[],"O":[{"%":227,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":226},{"%":227}],"O":[{"%":228,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.embedding","A":[{"AT":{"#":"0.a_i64","D":-1},"N":"padding_idx"},{"AT":{"#":"0.a_bool","D":false},"N":"sparse"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/Embedding_3/"},"N":"struct_name"}],"I":[{"%":228},{"%":199}],"O":[{"%":229,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/"},"N":"struct_name"}],"I":[{"%":221},{"%":229}],"O":[{"%":230,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/LayerNorm/"},"N":"struct_name"}],"I":[{"%":230},{"%":198},{"%":197}],"O":[{"%":231,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":232,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":233,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":234,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/ErnieEmbeddings/Dropout/"},"N":"struct_name"}],"I":[{"%":231},{"%":0},{"%":234}],"O":[{"%":235,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":236,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":235},{"%":196}],"O":[{"%":237,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":237},{"%":195}],"O":[{"%":238,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":239,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":238},{"%":239}],"O":[{"%":240,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":240}],"O":[{"%":241,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":235},{"%":194}],"O":[{"%":242,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":242},{"%":193}],"O":[{"%":243,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":235},{"%":192}],"O":[{"%":244,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":244},{"%":191}],"O":[{"%":245,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":246,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":243},{"%":246}],"O":[{"%":247,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":247}],"O":[{"%":248,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":249,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":245},{"%":249}],"O":[{"%":250,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":250}],"O":[{"%":251,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":252,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":241},{"%":252}],"O":[{"%":253,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":253},{"%":248}],"O":[{"%":254,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":254},{"%":212}],"O":[{"%":255,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":255}],"O":[{"%":256,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":257,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":256},{"%":0},{"%":257}],"O":[{"%":258,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":259,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":258},{"%":251}],"O":[{"%":260,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":260}],"O":[{"%":261,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":262,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":261},{"%":262}],"O":[{"%":263,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":263},{"%":190}],"O":[{"%":264,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":264},{"%":189}],"O":[{"%":265,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":266,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Dropout/"},"N":"struct_name"}],"I":[{"%":265},{"%":0},{"%":266}],"O":[{"%":267,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":268,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/"},"N":"struct_name"}],"I":[{"%":235},{"%":267}],"O":[{"%":269,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/LayerNorm/"},"N":"struct_name"}],"I":[{"%":269},{"%":184},{"%":183}],"O":[{"%":270,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":271,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":272,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Linear/"},"N":"struct_name"}],"I":[{"%":270},{"%":188}],"O":[{"%":273,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Linear/"},"N":"struct_name"}],"I":[{"%":273},{"%":187}],"O":[{"%":274,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/"},"N":"struct_name"}],"I":[{"%":274}],"O":[{"%":275,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Linear_1/"},"N":"struct_name"}],"I":[{"%":275},{"%":186}],"O":[{"%":276,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Linear_1/"},"N":"struct_name"}],"I":[{"%":276},{"%":185}],"O":[{"%":277,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":278,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/Dropout_2/"},"N":"struct_name"}],"I":[{"%":277},{"%":0},{"%":278}],"O":[{"%":279,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":280,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/"},"N":"struct_name"}],"I":[{"%":270},{"%":279}],"O":[{"%":281,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":281},{"%":182},{"%":181}],"O":[{"%":282,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":283,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":284,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":282},{"%":180}],"O":[{"%":285,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":285},{"%":179}],"O":[{"%":286,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":287,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":286},{"%":287}],"O":[{"%":288,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":288}],"O":[{"%":289,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":282},{"%":178}],"O":[{"%":290,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":290},{"%":177}],"O":[{"%":291,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":282},{"%":176}],"O":[{"%":292,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":292},{"%":175}],"O":[{"%":293,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":294,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":291},{"%":294}],"O":[{"%":295,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":295}],"O":[{"%":296,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":297,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":293},{"%":297}],"O":[{"%":298,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":298}],"O":[{"%":299,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":300,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":289},{"%":300}],"O":[{"%":301,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":301},{"%":296}],"O":[{"%":302,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":302},{"%":212}],"O":[{"%":303,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":303}],"O":[{"%":304,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":305,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":304},{"%":0},{"%":305}],"O":[{"%":306,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":307,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":306},{"%":299}],"O":[{"%":308,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":308}],"O":[{"%":309,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":310,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":309},{"%":310}],"O":[{"%":311,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":311},{"%":174}],"O":[{"%":312,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":312},{"%":173}],"O":[{"%":313,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":314,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Dropout/"},"N":"struct_name"}],"I":[{"%":313},{"%":0},{"%":314}],"O":[{"%":315,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":316,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/"},"N":"struct_name"}],"I":[{"%":282},{"%":315}],"O":[{"%":317,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/LayerNorm/"},"N":"struct_name"}],"I":[{"%":317},{"%":168},{"%":167}],"O":[{"%":318,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":319,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":320,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Linear/"},"N":"struct_name"}],"I":[{"%":318},{"%":172}],"O":[{"%":321,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Linear/"},"N":"struct_name"}],"I":[{"%":321},{"%":171}],"O":[{"%":322,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/"},"N":"struct_name"}],"I":[{"%":322}],"O":[{"%":323,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Linear_1/"},"N":"struct_name"}],"I":[{"%":323},{"%":170}],"O":[{"%":324,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Linear_1/"},"N":"struct_name"}],"I":[{"%":324},{"%":169}],"O":[{"%":325,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":326,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/Dropout_2/"},"N":"struct_name"}],"I":[{"%":325},{"%":0},{"%":326}],"O":[{"%":327,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":328,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/"},"N":"struct_name"}],"I":[{"%":318},{"%":327}],"O":[{"%":329,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_1/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":329},{"%":166},{"%":165}],"O":[{"%":330,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":331,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":332,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":330},{"%":164}],"O":[{"%":333,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":333},{"%":163}],"O":[{"%":334,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":335,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":334},{"%":335}],"O":[{"%":336,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":336}],"O":[{"%":337,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":330},{"%":162}],"O":[{"%":338,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":338},{"%":161}],"O":[{"%":339,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":330},{"%":160}],"O":[{"%":340,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":340},{"%":159}],"O":[{"%":341,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":342,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":339},{"%":342}],"O":[{"%":343,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":343}],"O":[{"%":344,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":345,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":341},{"%":345}],"O":[{"%":346,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":346}],"O":[{"%":347,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":348,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":337},{"%":348}],"O":[{"%":349,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":349},{"%":344}],"O":[{"%":350,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":350},{"%":212}],"O":[{"%":351,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":351}],"O":[{"%":352,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":353,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":352},{"%":0},{"%":353}],"O":[{"%":354,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":355,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":354},{"%":347}],"O":[{"%":356,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":356}],"O":[{"%":357,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":358,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":357},{"%":358}],"O":[{"%":359,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":359},{"%":158}],"O":[{"%":360,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":360},{"%":157}],"O":[{"%":361,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":362,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Dropout/"},"N":"struct_name"}],"I":[{"%":361},{"%":0},{"%":362}],"O":[{"%":363,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":364,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/"},"N":"struct_name"}],"I":[{"%":330},{"%":363}],"O":[{"%":365,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/LayerNorm/"},"N":"struct_name"}],"I":[{"%":365},{"%":152},{"%":151}],"O":[{"%":366,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":367,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":368,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Linear/"},"N":"struct_name"}],"I":[{"%":366},{"%":156}],"O":[{"%":369,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Linear/"},"N":"struct_name"}],"I":[{"%":369},{"%":155}],"O":[{"%":370,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/"},"N":"struct_name"}],"I":[{"%":370}],"O":[{"%":371,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Linear_1/"},"N":"struct_name"}],"I":[{"%":371},{"%":154}],"O":[{"%":372,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Linear_1/"},"N":"struct_name"}],"I":[{"%":372},{"%":153}],"O":[{"%":373,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":374,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/Dropout_2/"},"N":"struct_name"}],"I":[{"%":373},{"%":0},{"%":374}],"O":[{"%":375,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":376,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/"},"N":"struct_name"}],"I":[{"%":366},{"%":375}],"O":[{"%":377,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_2/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":377},{"%":150},{"%":149}],"O":[{"%":378,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":379,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":380,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":378},{"%":148}],"O":[{"%":381,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":381},{"%":147}],"O":[{"%":382,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":383,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":382},{"%":383}],"O":[{"%":384,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":384}],"O":[{"%":385,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":378},{"%":146}],"O":[{"%":386,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":386},{"%":145}],"O":[{"%":387,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":378},{"%":144}],"O":[{"%":388,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":388},{"%":143}],"O":[{"%":389,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":390,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":387},{"%":390}],"O":[{"%":391,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":391}],"O":[{"%":392,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":393,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":389},{"%":393}],"O":[{"%":394,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":394}],"O":[{"%":395,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":396,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":385},{"%":396}],"O":[{"%":397,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":397},{"%":392}],"O":[{"%":398,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":398},{"%":212}],"O":[{"%":399,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":399}],"O":[{"%":400,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":401,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":400},{"%":0},{"%":401}],"O":[{"%":402,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":403,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":402},{"%":395}],"O":[{"%":404,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":404}],"O":[{"%":405,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":406,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":405},{"%":406}],"O":[{"%":407,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":407},{"%":142}],"O":[{"%":408,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":408},{"%":141}],"O":[{"%":409,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":410,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Dropout/"},"N":"struct_name"}],"I":[{"%":409},{"%":0},{"%":410}],"O":[{"%":411,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":412,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/"},"N":"struct_name"}],"I":[{"%":378},{"%":411}],"O":[{"%":413,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/LayerNorm/"},"N":"struct_name"}],"I":[{"%":413},{"%":136},{"%":135}],"O":[{"%":414,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":415,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":416,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Linear/"},"N":"struct_name"}],"I":[{"%":414},{"%":140}],"O":[{"%":417,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Linear/"},"N":"struct_name"}],"I":[{"%":417},{"%":139}],"O":[{"%":418,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/"},"N":"struct_name"}],"I":[{"%":418}],"O":[{"%":419,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Linear_1/"},"N":"struct_name"}],"I":[{"%":419},{"%":138}],"O":[{"%":420,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Linear_1/"},"N":"struct_name"}],"I":[{"%":420},{"%":137}],"O":[{"%":421,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":422,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/Dropout_2/"},"N":"struct_name"}],"I":[{"%":421},{"%":0},{"%":422}],"O":[{"%":423,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":424,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/"},"N":"struct_name"}],"I":[{"%":414},{"%":423}],"O":[{"%":425,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_3/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":425},{"%":134},{"%":133}],"O":[{"%":426,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":427,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":428,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":426},{"%":132}],"O":[{"%":429,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":429},{"%":131}],"O":[{"%":430,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":431,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":430},{"%":431}],"O":[{"%":432,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":432}],"O":[{"%":433,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":426},{"%":130}],"O":[{"%":434,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":434},{"%":129}],"O":[{"%":435,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":426},{"%":128}],"O":[{"%":436,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":436},{"%":127}],"O":[{"%":437,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":438,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":435},{"%":438}],"O":[{"%":439,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":439}],"O":[{"%":440,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":441,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":437},{"%":441}],"O":[{"%":442,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":442}],"O":[{"%":443,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":444,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":433},{"%":444}],"O":[{"%":445,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":445},{"%":440}],"O":[{"%":446,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":446},{"%":212}],"O":[{"%":447,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":447}],"O":[{"%":448,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":449,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":448},{"%":0},{"%":449}],"O":[{"%":450,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":451,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":450},{"%":443}],"O":[{"%":452,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":452}],"O":[{"%":453,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":454,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":453},{"%":454}],"O":[{"%":455,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":455},{"%":126}],"O":[{"%":456,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":456},{"%":125}],"O":[{"%":457,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":458,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Dropout/"},"N":"struct_name"}],"I":[{"%":457},{"%":0},{"%":458}],"O":[{"%":459,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":460,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/"},"N":"struct_name"}],"I":[{"%":426},{"%":459}],"O":[{"%":461,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/LayerNorm/"},"N":"struct_name"}],"I":[{"%":461},{"%":120},{"%":119}],"O":[{"%":462,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":463,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":464,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Linear/"},"N":"struct_name"}],"I":[{"%":462},{"%":124}],"O":[{"%":465,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Linear/"},"N":"struct_name"}],"I":[{"%":465},{"%":123}],"O":[{"%":466,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/"},"N":"struct_name"}],"I":[{"%":466}],"O":[{"%":467,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Linear_1/"},"N":"struct_name"}],"I":[{"%":467},{"%":122}],"O":[{"%":468,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Linear_1/"},"N":"struct_name"}],"I":[{"%":468},{"%":121}],"O":[{"%":469,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":470,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/Dropout_2/"},"N":"struct_name"}],"I":[{"%":469},{"%":0},{"%":470}],"O":[{"%":471,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":472,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/"},"N":"struct_name"}],"I":[{"%":462},{"%":471}],"O":[{"%":473,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_4/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":473},{"%":118},{"%":117}],"O":[{"%":474,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":475,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":476,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":474},{"%":116}],"O":[{"%":477,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":477},{"%":115}],"O":[{"%":478,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":479,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":478},{"%":479}],"O":[{"%":480,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":480}],"O":[{"%":481,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":474},{"%":114}],"O":[{"%":482,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":482},{"%":113}],"O":[{"%":483,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":474},{"%":112}],"O":[{"%":484,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":484},{"%":111}],"O":[{"%":485,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":486,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":483},{"%":486}],"O":[{"%":487,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":487}],"O":[{"%":488,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":489,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":485},{"%":489}],"O":[{"%":490,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":490}],"O":[{"%":491,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":492,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":481},{"%":492}],"O":[{"%":493,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":493},{"%":488}],"O":[{"%":494,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":494},{"%":212}],"O":[{"%":495,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":495}],"O":[{"%":496,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":497,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":496},{"%":0},{"%":497}],"O":[{"%":498,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":499,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":498},{"%":491}],"O":[{"%":500,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":500}],"O":[{"%":501,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":502,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":501},{"%":502}],"O":[{"%":503,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":503},{"%":110}],"O":[{"%":504,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":504},{"%":109}],"O":[{"%":505,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":506,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Dropout/"},"N":"struct_name"}],"I":[{"%":505},{"%":0},{"%":506}],"O":[{"%":507,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":508,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/"},"N":"struct_name"}],"I":[{"%":474},{"%":507}],"O":[{"%":509,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/LayerNorm/"},"N":"struct_name"}],"I":[{"%":509},{"%":104},{"%":103}],"O":[{"%":510,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":511,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":512,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Linear/"},"N":"struct_name"}],"I":[{"%":510},{"%":108}],"O":[{"%":513,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Linear/"},"N":"struct_name"}],"I":[{"%":513},{"%":107}],"O":[{"%":514,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/"},"N":"struct_name"}],"I":[{"%":514}],"O":[{"%":515,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Linear_1/"},"N":"struct_name"}],"I":[{"%":515},{"%":106}],"O":[{"%":516,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Linear_1/"},"N":"struct_name"}],"I":[{"%":516},{"%":105}],"O":[{"%":517,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":518,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/Dropout_2/"},"N":"struct_name"}],"I":[{"%":517},{"%":0},{"%":518}],"O":[{"%":519,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":520,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/"},"N":"struct_name"}],"I":[{"%":510},{"%":519}],"O":[{"%":521,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_5/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":521},{"%":102},{"%":101}],"O":[{"%":522,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":523,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":524,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":522},{"%":100}],"O":[{"%":525,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":525},{"%":99}],"O":[{"%":526,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":527,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":526},{"%":527}],"O":[{"%":528,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":528}],"O":[{"%":529,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":522},{"%":98}],"O":[{"%":530,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":530},{"%":97}],"O":[{"%":531,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":522},{"%":96}],"O":[{"%":532,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":532},{"%":95}],"O":[{"%":533,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":534,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":531},{"%":534}],"O":[{"%":535,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":535}],"O":[{"%":536,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":537,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":533},{"%":537}],"O":[{"%":538,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":538}],"O":[{"%":539,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":540,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":529},{"%":540}],"O":[{"%":541,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":541},{"%":536}],"O":[{"%":542,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":542},{"%":212}],"O":[{"%":543,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":543}],"O":[{"%":544,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":545,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":544},{"%":0},{"%":545}],"O":[{"%":546,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":547,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":546},{"%":539}],"O":[{"%":548,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":548}],"O":[{"%":549,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":550,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":549},{"%":550}],"O":[{"%":551,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":551},{"%":94}],"O":[{"%":552,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":552},{"%":93}],"O":[{"%":553,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":554,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Dropout/"},"N":"struct_name"}],"I":[{"%":553},{"%":0},{"%":554}],"O":[{"%":555,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":556,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/"},"N":"struct_name"}],"I":[{"%":522},{"%":555}],"O":[{"%":557,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/LayerNorm/"},"N":"struct_name"}],"I":[{"%":557},{"%":88},{"%":87}],"O":[{"%":558,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":559,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":560,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Linear/"},"N":"struct_name"}],"I":[{"%":558},{"%":92}],"O":[{"%":561,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Linear/"},"N":"struct_name"}],"I":[{"%":561},{"%":91}],"O":[{"%":562,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/"},"N":"struct_name"}],"I":[{"%":562}],"O":[{"%":563,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Linear_1/"},"N":"struct_name"}],"I":[{"%":563},{"%":90}],"O":[{"%":564,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Linear_1/"},"N":"struct_name"}],"I":[{"%":564},{"%":89}],"O":[{"%":565,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":566,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/Dropout_2/"},"N":"struct_name"}],"I":[{"%":565},{"%":0},{"%":566}],"O":[{"%":567,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":568,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/"},"N":"struct_name"}],"I":[{"%":558},{"%":567}],"O":[{"%":569,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_6/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":569},{"%":86},{"%":85}],"O":[{"%":570,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":571,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":572,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":570},{"%":84}],"O":[{"%":573,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":573},{"%":83}],"O":[{"%":574,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":575,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":574},{"%":575}],"O":[{"%":576,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":576}],"O":[{"%":577,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":570},{"%":82}],"O":[{"%":578,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":578},{"%":81}],"O":[{"%":579,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":570},{"%":80}],"O":[{"%":580,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":580},{"%":79}],"O":[{"%":581,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":582,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":579},{"%":582}],"O":[{"%":583,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":583}],"O":[{"%":584,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":585,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":581},{"%":585}],"O":[{"%":586,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":586}],"O":[{"%":587,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":588,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":577},{"%":588}],"O":[{"%":589,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":589},{"%":584}],"O":[{"%":590,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":590},{"%":212}],"O":[{"%":591,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":591}],"O":[{"%":592,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":593,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":592},{"%":0},{"%":593}],"O":[{"%":594,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":595,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":594},{"%":587}],"O":[{"%":596,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":596}],"O":[{"%":597,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":598,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":597},{"%":598}],"O":[{"%":599,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":599},{"%":78}],"O":[{"%":600,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":600},{"%":77}],"O":[{"%":601,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":602,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Dropout/"},"N":"struct_name"}],"I":[{"%":601},{"%":0},{"%":602}],"O":[{"%":603,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":604,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/"},"N":"struct_name"}],"I":[{"%":570},{"%":603}],"O":[{"%":605,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/LayerNorm/"},"N":"struct_name"}],"I":[{"%":605},{"%":72},{"%":71}],"O":[{"%":606,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":607,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":608,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Linear/"},"N":"struct_name"}],"I":[{"%":606},{"%":76}],"O":[{"%":609,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Linear/"},"N":"struct_name"}],"I":[{"%":609},{"%":75}],"O":[{"%":610,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/"},"N":"struct_name"}],"I":[{"%":610}],"O":[{"%":611,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Linear_1/"},"N":"struct_name"}],"I":[{"%":611},{"%":74}],"O":[{"%":612,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Linear_1/"},"N":"struct_name"}],"I":[{"%":612},{"%":73}],"O":[{"%":613,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":614,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/Dropout_2/"},"N":"struct_name"}],"I":[{"%":613},{"%":0},{"%":614}],"O":[{"%":615,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":616,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/"},"N":"struct_name"}],"I":[{"%":606},{"%":615}],"O":[{"%":617,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_7/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":617},{"%":70},{"%":69}],"O":[{"%":618,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":619,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":620,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":618},{"%":68}],"O":[{"%":621,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":621},{"%":67}],"O":[{"%":622,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":623,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":622},{"%":623}],"O":[{"%":624,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":624}],"O":[{"%":625,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":618},{"%":66}],"O":[{"%":626,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":626},{"%":65}],"O":[{"%":627,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":618},{"%":64}],"O":[{"%":628,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":628},{"%":63}],"O":[{"%":629,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":630,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":627},{"%":630}],"O":[{"%":631,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":631}],"O":[{"%":632,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":633,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":629},{"%":633}],"O":[{"%":634,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":634}],"O":[{"%":635,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":636,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":625},{"%":636}],"O":[{"%":637,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":637},{"%":632}],"O":[{"%":638,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":638},{"%":212}],"O":[{"%":639,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":639}],"O":[{"%":640,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":641,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":640},{"%":0},{"%":641}],"O":[{"%":642,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":643,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":642},{"%":635}],"O":[{"%":644,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":644}],"O":[{"%":645,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":646,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":645},{"%":646}],"O":[{"%":647,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":647},{"%":62}],"O":[{"%":648,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":648},{"%":61}],"O":[{"%":649,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":650,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Dropout/"},"N":"struct_name"}],"I":[{"%":649},{"%":0},{"%":650}],"O":[{"%":651,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":652,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/"},"N":"struct_name"}],"I":[{"%":618},{"%":651}],"O":[{"%":653,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/LayerNorm/"},"N":"struct_name"}],"I":[{"%":653},{"%":56},{"%":55}],"O":[{"%":654,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":655,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":656,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Linear/"},"N":"struct_name"}],"I":[{"%":654},{"%":60}],"O":[{"%":657,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Linear/"},"N":"struct_name"}],"I":[{"%":657},{"%":59}],"O":[{"%":658,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/"},"N":"struct_name"}],"I":[{"%":658}],"O":[{"%":659,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Linear_1/"},"N":"struct_name"}],"I":[{"%":659},{"%":58}],"O":[{"%":660,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Linear_1/"},"N":"struct_name"}],"I":[{"%":660},{"%":57}],"O":[{"%":661,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":662,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/Dropout_2/"},"N":"struct_name"}],"I":[{"%":661},{"%":0},{"%":662}],"O":[{"%":663,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":664,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/"},"N":"struct_name"}],"I":[{"%":654},{"%":663}],"O":[{"%":665,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_8/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":665},{"%":54},{"%":53}],"O":[{"%":666,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":667,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":668,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":666},{"%":52}],"O":[{"%":669,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":669},{"%":51}],"O":[{"%":670,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":671,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":670},{"%":671}],"O":[{"%":672,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":672}],"O":[{"%":673,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":666},{"%":50}],"O":[{"%":674,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":674},{"%":49}],"O":[{"%":675,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":666},{"%":48}],"O":[{"%":676,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":676},{"%":47}],"O":[{"%":677,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":678,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":675},{"%":678}],"O":[{"%":679,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":679}],"O":[{"%":680,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":681,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":677},{"%":681}],"O":[{"%":682,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":682}],"O":[{"%":683,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":684,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":673},{"%":684}],"O":[{"%":685,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":685},{"%":680}],"O":[{"%":686,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":686},{"%":212}],"O":[{"%":687,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":687}],"O":[{"%":688,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":689,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":688},{"%":0},{"%":689}],"O":[{"%":690,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":691,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":690},{"%":683}],"O":[{"%":692,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":692}],"O":[{"%":693,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":694,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":693},{"%":694}],"O":[{"%":695,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":695},{"%":46}],"O":[{"%":696,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":696},{"%":45}],"O":[{"%":697,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":698,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Dropout/"},"N":"struct_name"}],"I":[{"%":697},{"%":0},{"%":698}],"O":[{"%":699,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":700,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/"},"N":"struct_name"}],"I":[{"%":666},{"%":699}],"O":[{"%":701,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/LayerNorm/"},"N":"struct_name"}],"I":[{"%":701},{"%":40},{"%":39}],"O":[{"%":702,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":703,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":704,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Linear/"},"N":"struct_name"}],"I":[{"%":702},{"%":44}],"O":[{"%":705,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Linear/"},"N":"struct_name"}],"I":[{"%":705},{"%":43}],"O":[{"%":706,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/"},"N":"struct_name"}],"I":[{"%":706}],"O":[{"%":707,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Linear_1/"},"N":"struct_name"}],"I":[{"%":707},{"%":42}],"O":[{"%":708,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Linear_1/"},"N":"struct_name"}],"I":[{"%":708},{"%":41}],"O":[{"%":709,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":710,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/Dropout_2/"},"N":"struct_name"}],"I":[{"%":709},{"%":0},{"%":710}],"O":[{"%":711,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":712,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/"},"N":"struct_name"}],"I":[{"%":702},{"%":711}],"O":[{"%":713,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_9/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":713},{"%":38},{"%":37}],"O":[{"%":714,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":715,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":716,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":714},{"%":36}],"O":[{"%":717,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":717},{"%":35}],"O":[{"%":718,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":719,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":718},{"%":719}],"O":[{"%":720,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":720}],"O":[{"%":721,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":714},{"%":34}],"O":[{"%":722,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":722},{"%":33}],"O":[{"%":723,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":714},{"%":32}],"O":[{"%":724,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":724},{"%":31}],"O":[{"%":725,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":726,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":723},{"%":726}],"O":[{"%":727,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":727}],"O":[{"%":728,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":729,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":725},{"%":729}],"O":[{"%":730,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":730}],"O":[{"%":731,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":732,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":721},{"%":732}],"O":[{"%":733,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":733},{"%":728}],"O":[{"%":734,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":734},{"%":212}],"O":[{"%":735,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":735}],"O":[{"%":736,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":737,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":736},{"%":0},{"%":737}],"O":[{"%":738,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":739,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":738},{"%":731}],"O":[{"%":740,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":740}],"O":[{"%":741,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":742,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":741},{"%":742}],"O":[{"%":743,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":743},{"%":30}],"O":[{"%":744,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":744},{"%":29}],"O":[{"%":745,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":746,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Dropout/"},"N":"struct_name"}],"I":[{"%":745},{"%":0},{"%":746}],"O":[{"%":747,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":748,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/"},"N":"struct_name"}],"I":[{"%":714},{"%":747}],"O":[{"%":749,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/LayerNorm/"},"N":"struct_name"}],"I":[{"%":749},{"%":24},{"%":23}],"O":[{"%":750,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":751,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":752,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Linear/"},"N":"struct_name"}],"I":[{"%":750},{"%":28}],"O":[{"%":753,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Linear/"},"N":"struct_name"}],"I":[{"%":753},{"%":27}],"O":[{"%":754,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/"},"N":"struct_name"}],"I":[{"%":754}],"O":[{"%":755,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Linear_1/"},"N":"struct_name"}],"I":[{"%":755},{"%":26}],"O":[{"%":756,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Linear_1/"},"N":"struct_name"}],"I":[{"%":756},{"%":25}],"O":[{"%":757,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":758,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/Dropout_2/"},"N":"struct_name"}],"I":[{"%":757},{"%":0},{"%":758}],"O":[{"%":759,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":760,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/"},"N":"struct_name"}],"I":[{"%":750},{"%":759}],"O":[{"%":761,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_10/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":761},{"%":22},{"%":21}],"O":[{"%":762,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":763,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":764,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":762},{"%":20}],"O":[{"%":765,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear/"},"N":"struct_name"}],"I":[{"%":765},{"%":19}],"O":[{"%":766,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":767,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":766},{"%":767}],"O":[{"%":768,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":768}],"O":[{"%":769,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":762},{"%":18}],"O":[{"%":770,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear_1/"},"N":"struct_name"}],"I":[{"%":770},{"%":17}],"O":[{"%":771,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":762},{"%":16}],"O":[{"%":772,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear_2/"},"N":"struct_name"}],"I":[{"%":772},{"%":15}],"O":[{"%":773,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":774,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":771},{"%":774}],"O":[{"%":775,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":775}],"O":[{"%":776,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":12},{"#":"0.a_i64","D":64}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":777,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[4],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":773},{"%":777}],"O":[{"%":778,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":778}],"O":[{"%":779,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.125},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":780,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.scale","A":[{"AT":{"#":"0.a_f32","D":0.0},"N":"bias"},{"AT":{"#":"0.a_bool","D":true},"N":"bias_after_scale"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":769},{"%":780}],"O":[{"%":781,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":true},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":781},{"%":776}],"O":[{"%":782,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":782},{"%":212}],"O":[{"%":783,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.softmax","A":[{"AT":{"#":"0.a_i32","D":-1},"N":"axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":783}],"O":[{"%":784,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":785,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":784},{"%":0},{"%":785}],"O":[{"%":786,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,512],"NCHW",[],0]}},{"%":787,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,12,512,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":786},{"%":779}],"O":[{"%":788,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,12,512,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.transpose","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i32","D":0},{"#":"0.a_i32","D":2},{"#":"0.a_i32","D":1},{"#":"0.a_i32","D":3}]},"N":"perm"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":788}],"O":[{"%":789,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,12,64],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full_int_array","A":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":0},{"#":"0.a_i64","D":768}]},"N":"value"},{"AT":{"#":"1.a_dtype","D":"int64"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[],"O":[{"%":790,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_i64"},[3],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.reshape","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/"},"N":"struct_name"}],"I":[{"%":789},{"%":790}],"O":[{"%":791,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":791},{"%":14}],"O":[{"%":792,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/MultiHeadAttention/Linear_3/"},"N":"struct_name"}],"I":[{"%":792},{"%":13}],"O":[{"%":793,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":794,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Dropout/"},"N":"struct_name"}],"I":[{"%":793},{"%":0},{"%":794}],"O":[{"%":795,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":796,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/"},"N":"struct_name"}],"I":[{"%":762},{"%":795}],"O":[{"%":797,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/LayerNorm/"},"N":"struct_name"}],"I":[{"%":797},{"%":8},{"%":7}],"O":[{"%":798,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":799,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":800,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Linear/"},"N":"struct_name"}],"I":[{"%":798},{"%":12}],"O":[{"%":801,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Linear/"},"N":"struct_name"}],"I":[{"%":801},{"%":11}],"O":[{"%":802,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.gelu","A":[{"AT":{"#":"0.a_bool","D":false},"N":"approximate"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/"},"N":"struct_name"}],"I":[{"%":802}],"O":[{"%":803,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,3072],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Linear_1/"},"N":"struct_name"}],"I":[{"%":803},{"%":10}],"O":[{"%":804,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Linear_1/"},"N":"struct_name"}],"I":[{"%":804},{"%":9}],"O":[{"%":805,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Dropout_2/"},"N":"struct_name"}],"I":[],"O":[{"%":806,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/Dropout_2/"},"N":"struct_name"}],"I":[{"%":805},{"%":0},{"%":806}],"O":[{"%":807,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":808,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/"},"N":"struct_name"}],"I":[{"%":798},{"%":807}],"O":[{"%":809,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.layer_norm","A":[{"AT":{"#":"0.a_f32","D":9.999999960041972e-13},"N":"epsilon"},{"AT":{"#":"0.a_i32","D":2},"N":"begin_norm_axis"},{"AT":{"#":"0.a_str","D":"/ErnieModel/TransformerEncoder/TransformerEncoderLayer_11/LayerNorm_1/"},"N":"struct_name"}],"I":[{"%":809},{"%":6},{"%":5}],"O":[{"%":810,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":811,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}},{"%":812,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.full","A":[{"AT":{"#":"1.a_intarray","D":[1]},"N":"shape"},{"AT":{"#":"0.a_f64","D":0.10000000149011612},"N":"value"},{"AT":{"#":"1.a_dtype","D":"float32"},"N":"dtype"},{"AT":{"#":"1.a_place","D":[1,0,""]},"N":"place"},{"AT":{"#":"0.a_str","D":"/Dropout/"},"N":"struct_name"}],"I":[],"O":[{"%":813,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[1],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"stop_gradient"}]},{"#":"1.dropout","A":[{"AT":{"#":"0.a_bool","D":true},"N":"is_test"},{"AT":{"#":"0.a_str","D":"upscale_in_train"},"N":"mode"},{"AT":{"#":"0.a_i32","D":0},"N":"seed"},{"AT":{"#":"0.a_bool","D":false},"N":"fix_seed"},{"AT":{"#":"0.a_str","D":"/Dropout/"},"N":"struct_name"}],"I":[{"%":810},{"%":0},{"%":813}],"O":[{"%":814,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,768],"NCHW",[],0]}},{"%":815,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_ui8"},[-1,512,768],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false},{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.matmul","A":[{"AT":{"#":"0.a_bool","D":false},"N":"transpose_x"},{"AT":{"#":"0.a_bool","D":false},"N":"transpose_y"},{"AT":{"#":"0.a_str","D":"/Linear/"},"N":"struct_name"}],"I":[{"%":814},{"%":2}],"O":[{"%":816,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,21],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.add","A":[{"AT":{"#":"0.a_str","D":"/Linear/"},"N":"struct_name"}],"I":[{"%":816},{"%":1}],"O":[{"%":817,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,21],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"}]},{"#":"1.fetch","A":[{"AT":{"#":"0.a_str","D":"fetch_name_0"},"N":"name"},{"AT":{"#":"0.a_i32","D":0},"N":"col"}],"I":[{"%":817}],"O":[{"%":818,"TT":{"#":"0.t_dtensor","D":[{"#":"0.t_f32"},[-1,512,21],"NCHW",[],0]}}],"OA":[{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":false}]},"N":"stop_gradient"},{"AT":{"#":"0.a_array","D":[{"#":"0.a_bool","D":true}]},"N":"persistable"}]}]}]}]}} \ No newline at end of file diff --git a/uie/test_model.py b/uie/test_model.py index e6f390b..158b316 100644 --- a/uie/test_model.py +++ b/uie/test_model.py @@ -2,12 +2,12 @@ from paddlenlp.transformers import ErnieForTokenClassification, ErnieTokenizer import paddle # 1. 加载模型和 tokenizer -model_path = R"E:\workingSpace\PycharmProjects\Intention_dev\uie\output\checkpoint-16920" # 你的模型路径 +model_path = R"E:\workingSpace\PycharmProjects\Intention_dev\uie\output\checkpoint-2440" # 你的模型路径 model = ErnieForTokenClassification.from_pretrained(model_path) tokenizer = ErnieTokenizer.from_pretrained(model_path) # 2. 处理输入文本 -text = "今天杨柳220kV变电站220kV南坪间隔扩建工程有多少作业计划" +text = "李四班组今天有多少作业计划" inputs = tokenizer(text, max_len=512, return_tensors="pd") # 3. 进行预测 @@ -19,17 +19,19 @@ with paddle.no_grad(): # 4. 标签映射 label_map = { 0: 'O', # 非实体 - 1: 'B-date', 12: 'I-date', - 2: 'B-project_name', 13: 'I-project_name', - 3: 'B-project_type', 14: 'I-project_type', - 4: 'B-construction_unit', 15: 'I-construction_unit', - 5: 'B-implementation_organization', 16: 'I-implementation_organization', - 6: 'B-project_department', 17: 'I-project_department', - 7: 'B-project_manager', 18: 'I-project_manager', - 8: 'B-subcontractor', 19: 'I-subcontractor', - 9: 'B-team_leader', 20: 'I-team_leader', - 10: 'B-risk_level', 21: 'I-risk_level', - 11: 'B-page', 22: 'I-page', + 1: 'B-date', 14: 'I-date', + 2: 'B-projectName', 15: 'I-projectName', + 3: 'B-projectType', 16: 'I-projectType', + 4: 'B-constructionUnit', 17: 'I-constructionUnit', + 5: 'B-implementationOrganization', 18: 'I-implementationOrganization', + 6: 'B-projectDepartment', 19: 'I-projectDepartment', + 7: 'B-projectManager', 20: 'I-projectManager', + 8: 'B-subcontractor', 21: 'I-subcontractor', + 9: 'B-teamLeader', 22: 'I-teamLeader', + 10: 'B-riskLevel', 23: 'I-riskLevel', + 11: 'B-page', 24: 'I-page', + 12: 'B-operating', 25: 'I-operating', + 13: 'B-teamName', 26: 'I-teamName', } # 5. 解析预测结果 @@ -41,6 +43,7 @@ current_entity = None current_label = None for token, label_id in zip(tokens, predicted_labels): + print(label_id) label = label_map.get(label_id, "O") if label.startswith("B-"): # 开始新实体 diff --git a/uie/train.py b/uie/train.py index 2995048..7731fb0 100644 --- a/uie/train.py +++ b/uie/train.py @@ -18,7 +18,7 @@ def preprocess_function(example, tokenizer): entity_types = [ 'date', 'project_name', 'project_type', 'construction_unit', 'implementation_organization', 'project_department', 'project_manager', - 'subcontractor', 'team_leader', 'risk_level','page' + 'subcontractor', 'team_leader', 'risk_level','page','operating','team_name' ] # 文本 Tokenization @@ -60,7 +60,7 @@ def preprocess_function(example, tokenizer): # === 3. 加载 UIE 预训练模型 === -model = ErnieForTokenClassification.from_pretrained("uie-base", num_classes=25) # 3 类 (O, B, I) +model = ErnieForTokenClassification.from_pretrained("uie-base", num_classes=27) # 3 类 (O, B, I) tokenizer = ErnieTokenizer.from_pretrained("uie-base") # === 4. 加载数据集 === diff --git a/uie/train1.py b/uie/train1.py new file mode 100644 index 0000000..b2bd1f0 --- /dev/null +++ b/uie/train1.py @@ -0,0 +1,247 @@ +import json +import os +import yaml +import numpy as np +from dataclasses import dataclass +from typing import List, Dict, Optional +import paddle +from paddlenlp.metrics import SpanEvaluator +from sklearn.metrics import classification_report +from paddlenlp.data import DataCollatorWithPadding +from paddlenlp.datasets import MapDataset +from paddlenlp.trainer import Trainer, TrainingArguments, get_last_checkpoint +from paddlenlp.transformers import ErnieForTokenClassification, AutoTokenizer, UIEM, UIE, export_model +from paddlenlp.utils.log import logger + + +def load_config(config_path): + """加载YAML配置文件""" + with open(config_path, "r", encoding="utf-8") as f: + return yaml.safe_load(f) + + +# === 1. 加载数据 === +def load_dataset(data_path): + with open(data_path, "r", encoding="utf-8") as f: + data = json.load(f) + return MapDataset(data) + + +@dataclass +class DataArguments: + train_path: str + dev_path: str + max_seq_length: Optional[int] = 512 + dynamic_max_length: Optional[List[int]] = None + + +@dataclass +class ModelArguments: + model_name_or_path: str = "uie-base" + export_model_dir: Optional[str] = None + multilingual: bool = False + +def preprocess_function(example, tokenizer): + # 文本 Tokenization + inputs = tokenizer(example["text"], max_length=512, truncation=True, return_offsets_mapping=True) + offset_mapping = inputs["offset_mapping"] + # 初始化 label_ids(0 表示 O 标签) + label_ids = [0] * len(offset_mapping) # 0: O, 1: B-XXX, 2: I-XXX + + # 处理实体 + if "annotations" in example: + for entity in example["annotations"]: + start, end, entity_label = entity["start"], entity["end"], entity["label"] + + # 确保 entity_label 在我们的标签范围内 + if entity_label not in config["labels"]: + continue # 如果实体标签不在范围内,则跳过 + # 将实体类型映射到索引编号 + entity_class = config["labels"].index(entity_label) + 1 # 1: B-XXX, 2: B-XXX, ... + # 处理实体的起始位置 + entity_started = False # 标记实体是否已开始 + for idx, (char_start, char_end) in enumerate(offset_mapping): + token = inputs['input_ids'][idx] + # 排除特殊 token + if token == tokenizer.cls_token_id or token == tokenizer.sep_token_id: + continue # 跳过 [CLS] 和 [SEP] token + if char_start >= start and char_end <= end: + if not entity_started: + label_ids[idx] = entity_class # B-实体 + entity_started = True + else: + label_ids[idx] = entity_class + len(config["labels"]) # I-实体 + + # 将标注结果加到输入 + inputs["labels"] = label_ids + del inputs["offset_mapping"] # 删除 offset_mapping + return inputs + + +# 加载配置文件 +config = load_config("data.yaml") + +# 从配置文件中提取参数 +model_args = ModelArguments(**config["model_args"]) +data_args = DataArguments(**config["data_args"]) + +# 确保学习率是浮动数值 +if isinstance(config["training_args"]["learning_rate"], str): + config["training_args"]["learning_rate"] = float(config["training_args"]["learning_rate"]) + +training_args = CompressionArguments(**config["training_args"]) + +# 打印模型和数据配置 +print(f"Model config: {model_args}") +print(f"Data config: {data_args}") +print(f"Training config: {training_args}") + +paddle.set_device(training_args.device) + +logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, world_size: {training_args.world_size}, " + + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" +) + +# 检查是否存在上次训练的检查点 +last_checkpoint = None +if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: + last_checkpoint = get_last_checkpoint(training_args.output_dir) + if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not empty. " + "Use --overwrite_output_dir to overcome." + ) + elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: + logger.info( + f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " + "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." + ) + +tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) +if model_args.multilingual: + model = UIEM.from_pretrained(model_args.model_name_or_path) +else: + model = UIE.from_pretrained(model_args.model_name_or_path) + +# === 4. 加载数据集 === +train_dataset = load_dataset(R"data/train.json") # 训练数据集 +dev_dataset = load_dataset(R"data/val.json") # 验证数据集 + +# === 5. 处理数据 === +train_ds = train_dataset.map(lambda x: preprocess_function(x, tokenizer), lazy=False) +dev_ds = dev_dataset.map(lambda x: preprocess_function(x, tokenizer), lazy=False) + +if training_args.device == "npu": + data_collator = DataCollatorWithPadding(tokenizer, padding="longest") +else: + data_collator = DataCollatorWithPadding(tokenizer) + +criterion = paddle.nn.BCELoss() + + +def uie_loss_func(outputs, labels): + start_ids, end_ids = labels + start_prob, end_prob = outputs + start_ids = paddle.cast(start_ids, "float32") + end_ids = paddle.cast(end_ids, "float32") + loss_start = criterion(start_prob, start_ids) + loss_end = criterion(end_prob, end_ids) + loss = (loss_start + loss_end) / 2.0 + return loss + + +def compute_metrics(p): + metric = SpanEvaluator() + start_prob, end_prob = p.predictions + start_ids, end_ids = p.label_ids + metric.reset() + + num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids) + metric.update(num_correct, num_infer, num_label) + precision, recall, f1 = metric.accumulate() + metric.reset() + + return {"precision": precision, "recall": recall, "f1": f1} + + +trainer = Trainer( + model=model, + criterion=uie_loss_func, + args=training_args, + data_collator=data_collator, + train_dataset=train_ds if training_args.do_train or training_args.do_compress else None, + eval_dataset=dev_ds if training_args.do_eval or training_args.do_compress else None, + tokenizer=tokenizer, + compute_metrics=compute_metrics, +) + +trainer.optimizer = paddle.optimizer.AdamW( + learning_rate=training_args.learning_rate, parameters=model.parameters() +) +checkpoint = None +if training_args.resume_from_checkpoint is not None: + checkpoint = training_args.resume_from_checkpoint +elif last_checkpoint is not None: + checkpoint = last_checkpoint + +# 训练过程 +if training_args.do_train: + train_result = trainer.train(resume_from_checkpoint=checkpoint) + metrics = train_result.metrics + trainer.save_model() + trainer.log_metrics("train", metrics) + trainer.save_metrics("train", metrics) + trainer.save_state() + +# 评估模型 +if training_args.do_eval: + eval_metrics = trainer.evaluate() + trainer.log_metrics("eval", eval_metrics) + +# 导出推理模型 +if training_args.do_export: + if training_args.device == "npu": + input_spec_dtype = "int32" + else: + input_spec_dtype = "int64" + + input_spec = [ + paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="input_ids"), + paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="position_ids"), + ] + + if model_args.export_model_dir is None: + model_args.export_model_dir = os.path.join(training_args.output_dir, "export") + + export_model(model=trainer.model, input_spec=input_spec, path=model_args.export_model_dir) + trainer.tokenizer.save_pretrained(model_args.export_model_dir) + +# 如果需要压缩模型 +if training_args.do_compress: + @paddle.no_grad() + def custom_evaluate(self, model, data_loader): + metric = SpanEvaluator() + model.eval() + metric.reset() + for batch in data_loader: + if model_args.multilingual: + logits = model(input_ids=batch["input_ids"], position_ids=batch["position_ids"]) + else: + logits = model( + input_ids=batch["input_ids"], + token_type_ids=batch["token_type_ids"], + position_ids=batch["position_ids"], + attention_mask=batch["attention_mask"], + ) + start_prob, end_prob = logits + start_ids, end_ids = batch["start_positions"], batch["end_positions"] + num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids) + metric.update(num_correct, num_infer, num_label) + precision, recall, f1 = metric.accumulate() + logger.info("f1: %s, precision: %s, recall: %s" % (f1, precision, recall)) + model.train() + return f1 + + + trainer.compress(custom_evaluate=custom_evaluate)