Langchain-Chatchat/configs/model_config.py.example

155 lines
5.8 KiB
Plaintext
Raw Normal View History

2023-04-25 20:14:33 +08:00
import os
import logging
2023-07-27 23:22:07 +08:00
import torch
import argparse
import json
2023-07-27 23:22:07 +08:00
# 日志格式
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
import json
2023-07-27 23:22:07 +08:00
2023-06-12 00:10:47 +08:00
# 在以下字典中修改属性值以指定本地embedding模型存储位置
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
# 此处请写绝对路径
2023-04-13 23:01:52 +08:00
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
2023-04-27 07:40:57 +08:00
"text2vec-base": "shibing624/text2vec-base-chinese",
2023-07-27 23:28:33 +08:00
"text2vec": "GanymedeNil/text2vec-large-chinese",
2023-07-27 23:22:07 +08:00
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
"text2vec-multilingual": "shibing624/text2vec-base-multilingual",
"m3e-small": "moka-ai/m3e-small",
2023-07-27 23:28:33 +08:00
"m3e-base": "moka-ai/m3e-base",
2023-07-27 23:22:07 +08:00
"m3e-large": "moka-ai/m3e-large",
2023-04-13 23:01:52 +08:00
}
2023-07-27 23:22:07 +08:00
# 选用的 Embedding 名称
EMBEDDING_MODEL = "m3e-base"
2023-04-13 23:01:52 +08:00
2023-07-27 23:22:07 +08:00
# Embedding 模型运行设备
2023-04-13 23:01:52 +08:00
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
2023-07-27 23:22:07 +08:00
2023-04-13 23:01:52 +08:00
llm_model_dict = {
"chatglm-6b": {
2023-07-28 16:12:57 +08:00
"local_model_path": "THUDM/chatglm-6b",
2023-07-27 23:22:07 +08:00
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
2023-07-11 19:36:50 +08:00
"api_key": "EMPTY"
2023-07-19 10:00:23 +08:00
},
2023-07-27 23:22:07 +08:00
"chatglm-6b-int4": {
2023-07-28 16:12:57 +08:00
"local_model_path": "THUDM/chatglm-6b-int4",
2023-07-19 10:00:23 +08:00
"api_base_url": "http://localhost:8001/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_key": "EMPTY"
2023-05-31 22:11:28 +08:00
},
2023-07-27 23:22:07 +08:00
"chatglm2-6b": {
2023-07-28 16:12:57 +08:00
"local_model_path": "THUDM/chatglm2-6b",
2023-07-27 23:22:07 +08:00
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_key": "EMPTY"
2023-06-25 17:04:16 +08:00
},
2023-05-31 22:11:28 +08:00
"chatglm2-6b-32k": {
"local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k",
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_key": "EMPTY"
},
2023-07-27 23:22:07 +08:00
"vicuna-13b-hf": {
"local_model_path": "",
2023-07-11 19:36:50 +08:00
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_key": "EMPTY"
2023-05-31 22:11:28 +08:00
},
2023-07-27 23:22:07 +08:00
2023-07-11 23:40:49 +08:00
# 调用chatgpt时如果报出 urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
# Max retries exceeded with url: /v1/chat/completions
# 则需要将urllib3版本修改为1.25.11
# 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool则将https改为http
# 参考https://zhuanlan.zhihu.com/p/350015032
2023-07-11 23:40:49 +08:00
# 如果报出raise NewConnectionError(
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
2023-07-11 23:40:49 +08:00
# Failed to establish a new connection: [WinError 10060]
2023-07-19 10:57:09 +08:00
# 则是因为内地和香港的IP都被OPENAI封了需要切换为日本、新加坡等地
2023-07-11 20:19:50 +08:00
"openai-chatgpt-3.5": {
2023-07-28 16:12:57 +08:00
"local_model_path": "gpt-3.5-turbo",
2023-07-27 23:22:07 +08:00
"api_base_url": "https://api.openapi.com/v1",
"api_key": os.environ.get("OPENAI_API_KEY")
2023-07-11 19:36:50 +08:00
},
2023-04-13 23:01:52 +08:00
}
# LLM 名称
2023-07-27 23:22:07 +08:00
LLM_MODEL = "chatglm2-6b"
2023-07-27 23:22:07 +08:00
# LLM 运行设备
2023-04-13 23:01:52 +08:00
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
2023-07-27 23:22:07 +08:00
# 日志存储路径
LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "logs")
2023-07-28 16:12:57 +08:00
if not os.path.exists(LOG_PATH):
os.mkdir(LOG_PATH)
2023-07-27 23:22:07 +08:00
# 知识库默认存储路径
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
2023-04-19 23:02:47 +08:00
2023-08-08 15:56:32 +08:00
# 数据库默认存储路径。
# 如果使用sqlite可以直接修改DB_ROOT_PATH如果使用其它数据库请直接修改SQLALCHEMY_DATABASE_URI。
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}"
# 缓存向量库数量
CACHED_VS_NUM = 1
# 知识库匹配向量数量
VECTOR_SEARCH_TOP_K = 5
# 搜索引擎匹配结题数量
SEARCH_ENGINE_TOP_K = 5
2023-07-27 23:22:07 +08:00
# nltk 模型存储路径
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
2023-07-27 23:22:07 +08:00
# 基于本地知识问答的提示词模版
PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。
2023-07-27 23:22:07 +08:00
【已知信息】{context}
2023-07-27 23:22:07 +08:00
【问题】{question}"""
2023-07-27 23:22:07 +08:00
# API 是否开启跨域默认为False如果需要开启请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
# Bing 搜索必备变量
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
# 具体申请方式请见
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
# 使用python创建bing api 搜索实例详见:
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 注意不是bing Webmaster Tools的api key
# 此外如果是在服务器上报Failed to establish a new connection: [Errno 110] Connection timed out
# 是因为服务器加了防火墙需要联系管理员加白名单如果公司的服务器的话就别想了GG
BING_SUBSCRIPTION_KEY = ""
2023-08-08 15:56:32 +08:00
kbs_config = {
"faiss": {
},
"milvus": {
"host": "127.0.0.1",
"port": "19530",
"user": "",
"password": "",
"secure": False,
}
}
2023-08-09 23:09:24 +08:00
# 是否开启中文标题加强,以及标题增强的相关配置
# 通过增加标题判断判断哪些文本为标题并在metadata中进行标记
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
ZH_TITLE_ENHANCE = False