Langchain-Chatchat/server/knowledge_base/kb_service/milvus_kb_service.py

87 lines
2.8 KiB
Python
Raw Normal View History

2023-08-07 16:32:34 +08:00
from typing import List
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores import Milvus
from configs.model_config import SCORE_THRESHOLD, kbs_config
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
from server.knowledge_base.utils import KnowledgeFile
2023-08-07 16:32:34 +08:00
class MilvusKBService(KBService):
milvus: Milvus
@staticmethod
def get_collection(milvus_name):
from pymilvus import Collection
return Collection(milvus_name)
@staticmethod
def search(milvus_name, content, limit=3):
search_params = {
"metric_type": "L2",
2023-08-07 16:32:34 +08:00
"params": {"nprobe": 10},
}
2023-08-07 16:32:34 +08:00
c = MilvusKBService.get_collection(milvus_name)
return c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"])
def do_create_kb(self):
pass
def vs_type(self) -> str:
return SupportedVSType.MILVUS
def _load_milvus(self, embeddings: Embeddings = None):
if embeddings is None:
embeddings = self._load_embeddings()
self.milvus = Milvus(embedding_function=embeddings,
2023-08-07 16:32:34 +08:00
collection_name=self.kb_name, connection_args=kbs_config.get("milvus"))
def do_init(self):
self._load_milvus()
def do_drop_kb(self):
self.milvus.col.drop()
def do_search(self, query: str, top_k: int,score_threshold: float, embeddings: Embeddings):
# todo: support score threshold
2023-08-07 16:32:34 +08:00
self._load_milvus(embeddings=embeddings)
2023-08-22 16:52:04 +08:00
return self.milvus.similarity_search_with_score(query, top_k)
2023-08-07 16:32:34 +08:00
def add_doc(self, kb_file: KnowledgeFile):
"""
向知识库添加文件
"""
docs = kb_file.file2text()
self.milvus.add_documents(docs)
2023-08-08 14:25:55 +08:00
from server.db.repository.knowledge_file_repository import add_doc_to_db
2023-08-07 16:32:34 +08:00
status = add_doc_to_db(kb_file)
return status
def do_add_doc(self, docs: List[Document], embeddings: Embeddings):
pass
def do_delete_doc(self, kb_file: KnowledgeFile):
filepath = kb_file.filepath.replace('\\', '\\\\')
delete_list = [item.get("pk") for item in
self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
self.milvus.col.delete(expr=f'pk in {delete_list}')
2023-08-07 16:32:34 +08:00
def do_clear_vs(self):
if not self.milvus.col:
self.milvus.col.drop()
if __name__ == '__main__':
2023-08-08 14:25:55 +08:00
# 测试建表使用
from server.db.base import Base, engine
2023-08-22 16:52:04 +08:00
2023-08-08 14:25:55 +08:00
Base.metadata.create_all(bind=engine)
2023-08-07 16:32:34 +08:00
milvusService = MilvusKBService("test")
2023-08-11 23:36:31 +08:00
milvusService.add_doc(KnowledgeFile("README.md", "test"))
milvusService.delete_doc(KnowledgeFile("README.md", "test"))
2023-08-07 16:32:34 +08:00
milvusService.do_drop_kb()
print(milvusService.search_docs("测试"))