2023-08-07 16:32:34 +08:00
|
|
|
from typing import List
|
|
|
|
|
|
|
|
|
|
from langchain.embeddings.base import Embeddings
|
|
|
|
|
from langchain.schema import Document
|
|
|
|
|
from langchain.vectorstores import Milvus
|
|
|
|
|
|
2023-08-10 00:36:51 +08:00
|
|
|
from configs.model_config import SCORE_THRESHOLD, kbs_config
|
2023-08-08 16:21:00 +08:00
|
|
|
|
2023-08-09 10:46:01 +08:00
|
|
|
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
|
2023-08-08 16:21:00 +08:00
|
|
|
from server.knowledge_base.utils import KnowledgeFile
|
2023-08-07 16:32:34 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
class MilvusKBService(KBService):
|
|
|
|
|
milvus: Milvus
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def get_collection(milvus_name):
|
|
|
|
|
from pymilvus import Collection
|
|
|
|
|
return Collection(milvus_name)
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def search(milvus_name, content, limit=3):
|
|
|
|
|
search_params = {
|
2023-08-06 23:43:54 +08:00
|
|
|
"metric_type": "L2",
|
2023-08-07 16:32:34 +08:00
|
|
|
"params": {"nprobe": 10},
|
2023-08-06 23:43:54 +08:00
|
|
|
}
|
2023-08-07 16:32:34 +08:00
|
|
|
c = MilvusKBService.get_collection(milvus_name)
|
|
|
|
|
return c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"])
|
|
|
|
|
|
|
|
|
|
def do_create_kb(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def vs_type(self) -> str:
|
|
|
|
|
return SupportedVSType.MILVUS
|
|
|
|
|
|
2023-08-09 10:46:01 +08:00
|
|
|
def _load_milvus(self, embeddings: Embeddings = None):
|
|
|
|
|
if embeddings is None:
|
|
|
|
|
embeddings = self._load_embeddings()
|
|
|
|
|
self.milvus = Milvus(embedding_function=embeddings,
|
2023-08-07 16:32:34 +08:00
|
|
|
collection_name=self.kb_name, connection_args=kbs_config.get("milvus"))
|
|
|
|
|
|
|
|
|
|
def do_init(self):
|
|
|
|
|
self._load_milvus()
|
|
|
|
|
|
|
|
|
|
def do_drop_kb(self):
|
|
|
|
|
self.milvus.col.drop()
|
|
|
|
|
|
2023-08-24 21:31:02 +08:00
|
|
|
def do_search(self, query: str, top_k: int,score_threshold: float, embeddings: Embeddings):
|
2023-08-16 13:18:58 +08:00
|
|
|
# todo: support score threshold
|
2023-08-07 16:32:34 +08:00
|
|
|
self._load_milvus(embeddings=embeddings)
|
2023-08-22 16:52:04 +08:00
|
|
|
return self.milvus.similarity_search_with_score(query, top_k)
|
2023-08-07 16:32:34 +08:00
|
|
|
|
|
|
|
|
def add_doc(self, kb_file: KnowledgeFile):
|
|
|
|
|
"""
|
|
|
|
|
向知识库添加文件
|
|
|
|
|
"""
|
|
|
|
|
docs = kb_file.file2text()
|
|
|
|
|
self.milvus.add_documents(docs)
|
2023-08-08 14:25:55 +08:00
|
|
|
from server.db.repository.knowledge_file_repository import add_doc_to_db
|
2023-08-07 16:32:34 +08:00
|
|
|
status = add_doc_to_db(kb_file)
|
|
|
|
|
return status
|
|
|
|
|
|
|
|
|
|
def do_add_doc(self, docs: List[Document], embeddings: Embeddings):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def do_delete_doc(self, kb_file: KnowledgeFile):
|
|
|
|
|
filepath = kb_file.filepath.replace('\\', '\\\\')
|
|
|
|
|
delete_list = [item.get("pk") for item in
|
|
|
|
|
self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
|
|
|
|
|
self.milvus.col.delete(expr=f'pk in {delete_list}')
|
2023-08-06 23:43:54 +08:00
|
|
|
|
2023-08-07 16:32:34 +08:00
|
|
|
def do_clear_vs(self):
|
2023-08-24 21:31:02 +08:00
|
|
|
if not self.milvus.col:
|
|
|
|
|
self.milvus.col.drop()
|
2023-08-06 23:43:54 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2023-08-08 14:25:55 +08:00
|
|
|
# 测试建表使用
|
|
|
|
|
from server.db.base import Base, engine
|
2023-08-22 16:52:04 +08:00
|
|
|
|
2023-08-08 14:25:55 +08:00
|
|
|
Base.metadata.create_all(bind=engine)
|
2023-08-07 16:32:34 +08:00
|
|
|
milvusService = MilvusKBService("test")
|
2023-08-11 23:36:31 +08:00
|
|
|
milvusService.add_doc(KnowledgeFile("README.md", "test"))
|
|
|
|
|
milvusService.delete_doc(KnowledgeFile("README.md", "test"))
|
2023-08-07 16:32:34 +08:00
|
|
|
milvusService.do_drop_kb()
|
|
|
|
|
print(milvusService.search_docs("测试"))
|