Langchain-Chatchat/server/model_workers/base.py

72 lines
2.0 KiB
Python
Raw Normal View History

from configs.model_config import LOG_PATH
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.model_worker import BaseModelWorker
import uuid
import json
import sys
from pydantic import BaseModel
import fastchat
import threading
from typing import Dict, List
# 恢复被fastchat覆盖的标准输出
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
class ApiModelOutMsg(BaseModel):
error_code: int = 0
text: str
class ApiModelWorker(BaseModelWorker):
BASE_URL: str
SUPPORT_MODELS: List
def __init__(
self,
model_names: List[str],
controller_addr: str,
worker_addr: str,
context_len: int = 2048,
**kwargs,
):
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8])
kwargs.setdefault("model_path", "")
kwargs.setdefault("limit_worker_concurrency", 5)
super().__init__(model_names=model_names,
controller_addr=controller_addr,
worker_addr=worker_addr,
**kwargs)
self.context_len = context_len
self.init_heart_beat()
def count_token(self, params):
# TODO需要完善
print("count token")
print(params)
prompt = params["prompt"]
return {"count": len(str(prompt)), "error_code": 0}
def generate_stream_gate(self, params):
self.call_ct += 1
def generate_gate(self, params):
for x in self.generate_stream_gate(params):
pass
return json.loads(x[:-1].decode())
def get_embeddings(self, params):
print("embedding")
print(params)
# workaround to make program exit with Ctrl+c
# it should be deleted after pr is merged by fastchat
def init_heart_beat(self):
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=fastchat.serve.model_worker.heart_beat_worker, args=(self,), daemon=True,
)
self.heart_beat_thread.start()