503 lines
17 KiB
Python
503 lines
17 KiB
Python
|
|
"""Wrapper around FastChat APIs."""
|
||
|
|
from __future__ import annotations
|
||
|
|
|
||
|
|
import logging
|
||
|
|
import sys
|
||
|
|
import warnings
|
||
|
|
from abc import ABC
|
||
|
|
from typing import (
|
||
|
|
AbstractSet,
|
||
|
|
Any,
|
||
|
|
Callable,
|
||
|
|
Collection,
|
||
|
|
Dict,
|
||
|
|
Generator,
|
||
|
|
List,
|
||
|
|
Literal,
|
||
|
|
Mapping,
|
||
|
|
Optional,
|
||
|
|
Set,
|
||
|
|
Tuple,
|
||
|
|
Union,
|
||
|
|
)
|
||
|
|
|
||
|
|
from pydantic import Extra, Field, root_validator
|
||
|
|
from tenacity import (
|
||
|
|
before_sleep_log,
|
||
|
|
retry,
|
||
|
|
retry_if_exception_type,
|
||
|
|
stop_after_attempt,
|
||
|
|
wait_exponential,
|
||
|
|
)
|
||
|
|
|
||
|
|
from langchain.llms.base import BaseLLM
|
||
|
|
from langchain.schema import Generation, LLMResult
|
||
|
|
from langchain.utils import get_from_dict_or_env
|
||
|
|
from models.base import (RemoteRpcModel,
|
||
|
|
AnswerResult)
|
||
|
|
from models.loader import LoaderCheckPoint
|
||
|
|
import requests
|
||
|
|
import json
|
||
|
|
|
||
|
|
logger = logging.getLogger(__name__)
|
||
|
|
|
||
|
|
|
||
|
|
def _streaming_response_template() -> Dict[str, Any]:
|
||
|
|
"""
|
||
|
|
:return: 响应结构
|
||
|
|
"""
|
||
|
|
return {
|
||
|
|
"text": "",
|
||
|
|
"error_code": 0,
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None:
|
||
|
|
"""Update response from the stream response."""
|
||
|
|
response["text"] += stream_response["text"]
|
||
|
|
response["error_code"] += stream_response["error_code"]
|
||
|
|
|
||
|
|
|
||
|
|
class BaseFastChat(BaseLLM):
|
||
|
|
"""Wrapper around FastChat large language models."""
|
||
|
|
|
||
|
|
api_base_url: str = "http://localhost:21002/worker_generate_stream"
|
||
|
|
model_name: str = "text-davinci-003"
|
||
|
|
"""Model name to use."""
|
||
|
|
temperature: float = 0.7
|
||
|
|
"""What sampling temperature to use."""
|
||
|
|
max_new_tokens: int = 200
|
||
|
|
stop: int = 20
|
||
|
|
batch_size: int = 20
|
||
|
|
"""Maximum number of retries to make when generating."""
|
||
|
|
streaming: bool = False
|
||
|
|
"""Penalizes repeated tokens."""
|
||
|
|
n: int = 1
|
||
|
|
"""Whether to stream the results or not."""
|
||
|
|
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
|
||
|
|
"""Set of special tokens that are allowed。"""
|
||
|
|
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
|
||
|
|
"""Set of special tokens that are not allowed。"""
|
||
|
|
|
||
|
|
class Config:
|
||
|
|
"""Configuration for this pydantic object."""
|
||
|
|
|
||
|
|
extra = Extra.ignore
|
||
|
|
|
||
|
|
@root_validator(pre=True)
|
||
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
|
"""Build extra kwargs from additional params that were passed in."""
|
||
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||
|
|
|
||
|
|
extra = values.get("model_kwargs", {})
|
||
|
|
for field_name in list(values):
|
||
|
|
if field_name not in all_required_field_names:
|
||
|
|
if field_name in extra:
|
||
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
||
|
|
logger.warning(
|
||
|
|
f"""WARNING! {field_name} is not default parameter.
|
||
|
|
{field_name} was transfered to model_kwargs.
|
||
|
|
Please confirm that {field_name} is what you intended."""
|
||
|
|
)
|
||
|
|
extra[field_name] = values.pop(field_name)
|
||
|
|
values["model_kwargs"] = extra
|
||
|
|
return values
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
|
"""Get the default parameters for calling FastChat API."""
|
||
|
|
normal_params = {
|
||
|
|
"model": self.model_name,
|
||
|
|
"prompt": '',
|
||
|
|
"max_new_tokens": self.max_new_tokens,
|
||
|
|
"temperature": self.temperature,
|
||
|
|
}
|
||
|
|
|
||
|
|
return {**normal_params}
|
||
|
|
|
||
|
|
def _generate(
|
||
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
||
|
|
) -> LLMResult:
|
||
|
|
"""Call out to FastChat's endpoint with k unique prompts.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
prompts: The prompts to pass into the model.
|
||
|
|
stop: Optional list of stop words to use when generating.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
The full LLM output.
|
||
|
|
|
||
|
|
Example:
|
||
|
|
.. code-block:: python
|
||
|
|
|
||
|
|
response = fastchat.generate(["Tell me a joke."])
|
||
|
|
"""
|
||
|
|
# TODO: write a unit test for this
|
||
|
|
params = self._invocation_params
|
||
|
|
sub_prompts = self.get_sub_prompts(params, prompts)
|
||
|
|
choices = []
|
||
|
|
token_usage: Dict[str, int] = {}
|
||
|
|
headers = {"User-Agent": "fastchat Client"}
|
||
|
|
for _prompts in sub_prompts:
|
||
|
|
|
||
|
|
params["prompt"] = _prompts[0]
|
||
|
|
|
||
|
|
if stop is not None:
|
||
|
|
if "stop" in params:
|
||
|
|
raise ValueError("`stop` found in both the input and default params.")
|
||
|
|
params["stop"] = stop
|
||
|
|
|
||
|
|
if self.streaming:
|
||
|
|
if len(_prompts) > 1:
|
||
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
||
|
|
|
||
|
|
response_template = _streaming_response_template()
|
||
|
|
response = requests.post(
|
||
|
|
self.api_base_url,
|
||
|
|
headers=headers,
|
||
|
|
json=params,
|
||
|
|
stream=True,
|
||
|
|
)
|
||
|
|
for stream_resp in response.iter_lines(
|
||
|
|
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||
|
|
):
|
||
|
|
if stream_resp:
|
||
|
|
data = json.loads(stream_resp.decode("utf-8"))
|
||
|
|
skip_echo_len = len(_prompts[0])
|
||
|
|
output = data["text"][skip_echo_len:].strip()
|
||
|
|
data["text"] = output
|
||
|
|
self.callback_manager.on_llm_new_token(
|
||
|
|
output,
|
||
|
|
verbose=self.verbose,
|
||
|
|
logprobs=data["error_code"],
|
||
|
|
)
|
||
|
|
_update_response(response_template, data)
|
||
|
|
choices.append(response_template)
|
||
|
|
else:
|
||
|
|
response_template = _streaming_response_template()
|
||
|
|
response = requests.post(
|
||
|
|
self.api_base_url,
|
||
|
|
headers=headers,
|
||
|
|
json=params,
|
||
|
|
stream=True,
|
||
|
|
)
|
||
|
|
for stream_resp in response.iter_lines(
|
||
|
|
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||
|
|
):
|
||
|
|
if stream_resp:
|
||
|
|
data = json.loads(stream_resp.decode("utf-8"))
|
||
|
|
skip_echo_len = len(_prompts[0])
|
||
|
|
output = data["text"][skip_echo_len:].strip()
|
||
|
|
data["text"] = output
|
||
|
|
_update_response(response_template, data)
|
||
|
|
|
||
|
|
choices.append(response_template)
|
||
|
|
|
||
|
|
return self.create_llm_result(choices, prompts, token_usage)
|
||
|
|
|
||
|
|
async def _agenerate(
|
||
|
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
||
|
|
) -> LLMResult:
|
||
|
|
"""Call out to FastChat's endpoint async with k unique prompts."""
|
||
|
|
params = self._invocation_params
|
||
|
|
sub_prompts = self.get_sub_prompts(params, prompts)
|
||
|
|
choices = []
|
||
|
|
token_usage: Dict[str, int] = {}
|
||
|
|
|
||
|
|
headers = {"User-Agent": "fastchat Client"}
|
||
|
|
for _prompts in sub_prompts:
|
||
|
|
|
||
|
|
params["prompt"] = _prompts[0]
|
||
|
|
if stop is not None:
|
||
|
|
if "stop" in params:
|
||
|
|
raise ValueError("`stop` found in both the input and default params.")
|
||
|
|
params["stop"] = stop
|
||
|
|
|
||
|
|
if self.streaming:
|
||
|
|
if len(_prompts) > 1:
|
||
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
||
|
|
|
||
|
|
response_template = _streaming_response_template()
|
||
|
|
response = requests.post(
|
||
|
|
self.api_base_url,
|
||
|
|
headers=headers,
|
||
|
|
json=params,
|
||
|
|
stream=True,
|
||
|
|
)
|
||
|
|
for stream_resp in response.iter_lines(
|
||
|
|
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||
|
|
):
|
||
|
|
if stream_resp:
|
||
|
|
data = json.loads(stream_resp.decode("utf-8"))
|
||
|
|
skip_echo_len = len(_prompts[0])
|
||
|
|
output = data["text"][skip_echo_len:].strip()
|
||
|
|
data["text"] = output
|
||
|
|
self.callback_manager.on_llm_new_token(
|
||
|
|
output,
|
||
|
|
verbose=self.verbose,
|
||
|
|
logprobs=data["error_code"],
|
||
|
|
)
|
||
|
|
_update_response(response_template, data)
|
||
|
|
choices.append(response_template)
|
||
|
|
else:
|
||
|
|
response_template = _streaming_response_template()
|
||
|
|
response = requests.post(
|
||
|
|
self.api_base_url,
|
||
|
|
headers=headers,
|
||
|
|
json=params,
|
||
|
|
stream=True,
|
||
|
|
)
|
||
|
|
for stream_resp in response.iter_lines(
|
||
|
|
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||
|
|
):
|
||
|
|
if stream_resp:
|
||
|
|
data = json.loads(stream_resp.decode("utf-8"))
|
||
|
|
skip_echo_len = len(_prompts[0])
|
||
|
|
output = data["text"][skip_echo_len:].strip()
|
||
|
|
data["text"] = output
|
||
|
|
_update_response(response_template, data)
|
||
|
|
|
||
|
|
choices.append(response_template)
|
||
|
|
|
||
|
|
return self.create_llm_result(choices, prompts, token_usage)
|
||
|
|
|
||
|
|
def get_sub_prompts(
|
||
|
|
self,
|
||
|
|
params: Dict[str, Any],
|
||
|
|
prompts: List[str],
|
||
|
|
) -> List[List[str]]:
|
||
|
|
"""Get the sub prompts for llm call."""
|
||
|
|
if params["max_new_tokens"] == -1:
|
||
|
|
if len(prompts) != 1:
|
||
|
|
raise ValueError(
|
||
|
|
"max_new_tokens set to -1 not supported for multiple inputs."
|
||
|
|
)
|
||
|
|
params["max_new_tokens"] = self.max_new_tokens_for_prompt(prompts[0])
|
||
|
|
# append pload
|
||
|
|
sub_prompts = [
|
||
|
|
prompts[i: i + self.batch_size]
|
||
|
|
for i in range(0, len(prompts), self.batch_size)
|
||
|
|
]
|
||
|
|
|
||
|
|
return sub_prompts
|
||
|
|
|
||
|
|
def create_llm_result(
|
||
|
|
self, choices: Any, prompts: List[str], token_usage: Dict[str, int]
|
||
|
|
) -> LLMResult:
|
||
|
|
"""Create the LLMResult from the choices and prompts."""
|
||
|
|
generations = []
|
||
|
|
for i, _ in enumerate(prompts):
|
||
|
|
sub_choices = choices[i * self.n: (i + 1) * self.n]
|
||
|
|
generations.append(
|
||
|
|
[
|
||
|
|
Generation(
|
||
|
|
text=choice["text"],
|
||
|
|
generation_info=dict(
|
||
|
|
finish_reason='over',
|
||
|
|
logprobs=choice["text"],
|
||
|
|
),
|
||
|
|
)
|
||
|
|
for choice in sub_choices
|
||
|
|
]
|
||
|
|
)
|
||
|
|
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
|
||
|
|
return LLMResult(generations=generations, llm_output=llm_output)
|
||
|
|
|
||
|
|
def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
|
||
|
|
"""Call FastChat with streaming flag and return the resulting generator.
|
||
|
|
|
||
|
|
BETA: this is a beta feature while we figure out the right abstraction.
|
||
|
|
Once that happens, this interface could change.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
prompt: The prompts to pass into the model.
|
||
|
|
stop: Optional list of stop words to use when generating.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
A generator representing the stream of tokens from OpenAI.
|
||
|
|
|
||
|
|
Example:
|
||
|
|
.. code-block:: python
|
||
|
|
|
||
|
|
generator = fastChat.stream("Tell me a joke.")
|
||
|
|
for token in generator:
|
||
|
|
yield token
|
||
|
|
"""
|
||
|
|
params = self._invocation_params
|
||
|
|
params["prompt"] = prompt
|
||
|
|
if stop is not None:
|
||
|
|
if "stop" in params:
|
||
|
|
raise ValueError("`stop` found in both the input and default params.")
|
||
|
|
params["stop"] = stop
|
||
|
|
|
||
|
|
headers = {"User-Agent": "fastchat Client"}
|
||
|
|
response = requests.post(
|
||
|
|
self.api_base_url,
|
||
|
|
headers=headers,
|
||
|
|
json=params,
|
||
|
|
stream=True,
|
||
|
|
)
|
||
|
|
for stream_resp in response.iter_lines(
|
||
|
|
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||
|
|
):
|
||
|
|
if stream_resp:
|
||
|
|
data = json.loads(stream_resp.decode("utf-8"))
|
||
|
|
skip_echo_len = len(prompt)
|
||
|
|
output = data["text"][skip_echo_len:].strip()
|
||
|
|
data["text"] = output
|
||
|
|
yield data
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _invocation_params(self) -> Dict[str, Any]:
|
||
|
|
"""Get the parameters used to invoke the model."""
|
||
|
|
return self._default_params
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
|
"""Get the identifying parameters."""
|
||
|
|
return {**{"model_name": self.model_name}, **self._default_params}
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _llm_type(self) -> str:
|
||
|
|
"""Return type of llm."""
|
||
|
|
return "fastChat"
|
||
|
|
|
||
|
|
def get_num_tokens(self, text: str) -> int:
|
||
|
|
"""Calculate num tokens with tiktoken package."""
|
||
|
|
# tiktoken NOT supported for Python < 3.8
|
||
|
|
if sys.version_info[1] < 8:
|
||
|
|
return super().get_num_tokens(text)
|
||
|
|
try:
|
||
|
|
import tiktoken
|
||
|
|
except ImportError:
|
||
|
|
raise ValueError(
|
||
|
|
"Could not import tiktoken python package. "
|
||
|
|
"This is needed in order to calculate get_num_tokens. "
|
||
|
|
"Please install it with `pip install tiktoken`."
|
||
|
|
)
|
||
|
|
|
||
|
|
enc = tiktoken.encoding_for_model(self.model_name)
|
||
|
|
|
||
|
|
tokenized_text = enc.encode(
|
||
|
|
text,
|
||
|
|
allowed_special=self.allowed_special,
|
||
|
|
disallowed_special=self.disallowed_special,
|
||
|
|
)
|
||
|
|
|
||
|
|
# calculate the number of tokens in the encoded text
|
||
|
|
return len(tokenized_text)
|
||
|
|
|
||
|
|
def modelname_to_contextsize(self, modelname: str) -> int:
|
||
|
|
"""Calculate the maximum number of tokens possible to generate for a model.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
modelname: The modelname we want to know the context size for.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
The maximum context size
|
||
|
|
|
||
|
|
Example:
|
||
|
|
.. code-block:: python
|
||
|
|
|
||
|
|
max_new_tokens = openai.modelname_to_contextsize("text-davinci-003")
|
||
|
|
"""
|
||
|
|
model_token_mapping = {
|
||
|
|
"vicuna-13b": 2049,
|
||
|
|
"koala": 2049,
|
||
|
|
"dolly-v2": 2049,
|
||
|
|
"oasst": 2049,
|
||
|
|
"stablelm": 2049,
|
||
|
|
}
|
||
|
|
|
||
|
|
context_size = model_token_mapping.get(modelname, None)
|
||
|
|
|
||
|
|
if context_size is None:
|
||
|
|
raise ValueError(
|
||
|
|
f"Unknown model: {modelname}. Please provide a valid OpenAI model name."
|
||
|
|
"Known models are: " + ", ".join(model_token_mapping.keys())
|
||
|
|
)
|
||
|
|
|
||
|
|
return context_size
|
||
|
|
|
||
|
|
def max_new_tokens_for_prompt(self, prompt: str) -> int:
|
||
|
|
"""Calculate the maximum number of tokens possible to generate for a prompt.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
prompt: The prompt to pass into the model.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
The maximum number of tokens to generate for a prompt.
|
||
|
|
|
||
|
|
Example:
|
||
|
|
.. code-block:: python
|
||
|
|
|
||
|
|
max_new_tokens = openai.max_token_for_prompt("Tell me a joke.")
|
||
|
|
"""
|
||
|
|
num_tokens = self.get_num_tokens(prompt)
|
||
|
|
|
||
|
|
# get max context size for model by name
|
||
|
|
max_size = self.modelname_to_contextsize(self.model_name)
|
||
|
|
return max_size - num_tokens
|
||
|
|
|
||
|
|
|
||
|
|
class FastChatAPILLM(RemoteRpcModel, BaseFastChat, ABC):
|
||
|
|
"""Wrapper around FastChat large language models.
|
||
|
|
|
||
|
|
Example:
|
||
|
|
.. code-block:: python
|
||
|
|
|
||
|
|
openai = FastChat(model_name="vicuna")
|
||
|
|
"""
|
||
|
|
checkPoint: LoaderCheckPoint = None
|
||
|
|
|
||
|
|
history_len: int = 10
|
||
|
|
|
||
|
|
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||
|
|
super().__init__()
|
||
|
|
self.checkPoint = checkPoint
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _invocation_params(self) -> Dict[str, Any]:
|
||
|
|
return {**{"model": self.model_name}, **super()._invocation_params}
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _check_point(self) -> LoaderCheckPoint:
|
||
|
|
return self.checkPoint
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _history_len(self) -> int:
|
||
|
|
return self.history_len
|
||
|
|
|
||
|
|
def set_history_len(self, history_len: int = 10) -> None:
|
||
|
|
self.history_len = history_len
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _api_key(self) -> str:
|
||
|
|
pass
|
||
|
|
|
||
|
|
@property
|
||
|
|
def _api_base_url(self) -> str:
|
||
|
|
return self.api_base_url
|
||
|
|
|
||
|
|
def set_api_key(self, api_key: str):
|
||
|
|
pass
|
||
|
|
|
||
|
|
def set_api_base_url(self, api_base_url: str):
|
||
|
|
self.api_base_url = api_base_url
|
||
|
|
|
||
|
|
def call_model_name(self, model_name):
|
||
|
|
self.model_name = model_name
|
||
|
|
|
||
|
|
def generatorAnswer(self, prompt: str,
|
||
|
|
history: List[List[str]] = [],
|
||
|
|
streaming: bool = False):
|
||
|
|
generator = self.stream("Tell me a joke.")
|
||
|
|
for token in generator:
|
||
|
|
yield token
|
||
|
|
|
||
|
|
history += [[prompt, token["text"]]]
|
||
|
|
answer_result = AnswerResult()
|
||
|
|
answer_result.history = history
|
||
|
|
answer_result.llm_output = {"answer": token["text"]}
|
||
|
|
yield answer_result
|