Langchain-Chatchat/webui_pages/knowledge_base/knowledge_base.py

368 lines
15 KiB
Python
Raw Normal View History

2023-08-01 14:47:38 +08:00
import streamlit as st
from webui_pages.utils import *
2023-08-12 01:26:17 +08:00
from st_aggrid import AgGrid, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder
import pandas as pd
from server.knowledge_base.utils import get_file_path, LOADER_DICT
from server.knowledge_base.kb_service.base import get_kb_details, get_kb_file_details
from typing import Literal, Dict, Tuple
from configs import (kbs_config,
EMBEDDING_MODEL, DEFAULT_VS_TYPE,
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE)
from server.utils import list_embed_models, list_online_embed_models
import os
import time
2023-08-12 01:26:17 +08:00
cell_renderer = JsCode("""function(params) {if(params.value==true){return ''}else{return '×'}}""")
2023-08-01 14:47:38 +08:00
2023-08-08 23:58:44 +08:00
def config_aggrid(
2023-08-10 23:51:10 +08:00
df: pd.DataFrame,
columns: Dict[Tuple[str, str], Dict] = {},
selection_mode: Literal["single", "multiple", "disabled"] = "single",
use_checkbox: bool = False,
2023-08-08 23:58:44 +08:00
) -> GridOptionsBuilder:
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_column("No", width=40)
for (col, header), kw in columns.items():
gb.configure_column(col, header, wrapHeaderText=True, **kw)
gb.configure_selection(
2023-08-11 23:36:31 +08:00
selection_mode=selection_mode,
use_checkbox=use_checkbox,
pre_selected_rows=st.session_state.get("selected_rows", [0]),
)
2023-11-30 23:40:03 +08:00
gb.configure_pagination(
enabled=True,
paginationAutoPageSize=False,
paginationPageSize=10
)
2023-08-08 23:58:44 +08:00
return gb
def file_exists(kb: str, selected_rows: List) -> Tuple[str, str]:
2023-11-30 23:40:03 +08:00
"""
check whether a doc file exists in local knowledge base folder.
return the file's name and path if it exists.
2023-11-30 23:40:03 +08:00
"""
if selected_rows:
file_name = selected_rows[0]["file_name"]
file_path = get_file_path(kb, file_name)
if os.path.isfile(file_path):
return file_name, file_path
return "", ""
def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
2023-08-12 14:08:21 +08:00
try:
kb_list = {x["kb_name"]: x for x in get_kb_details()}
2023-08-12 14:08:21 +08:00
except Exception as e:
st.error(
"获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。")
2023-08-12 14:08:21 +08:00
st.stop()
kb_names = list(kb_list.keys())
2023-08-12 01:26:17 +08:00
if "selected_kb_name" in st.session_state and st.session_state["selected_kb_name"] in kb_names:
selected_kb_index = kb_names.index(st.session_state["selected_kb_name"])
else:
selected_kb_index = 0
if "selected_kb_info" not in st.session_state:
st.session_state["selected_kb_info"] = ""
def format_selected_kb(kb_name: str) -> str:
if kb := kb_list.get(kb_name):
return f"{kb_name} ({kb['vs_type']} @ {kb['embed_model']})"
else:
return kb_name
2023-08-11 23:36:31 +08:00
selected_kb = st.selectbox(
2023-08-12 01:26:17 +08:00
"请选择或新建知识库:",
kb_names + ["新建知识库"],
format_func=format_selected_kb,
2023-08-12 01:26:17 +08:00
index=selected_kb_index
)
2023-08-11 23:36:31 +08:00
if selected_kb == "新建知识库":
with st.form("新建知识库"):
kb_name = st.text_input(
"新建知识库名称",
placeholder="新知识库名称,不支持中文命名",
key="kb_name",
)
kb_info = st.text_input(
"知识库简介",
placeholder="知识库简介方便Agent查找",
key="kb_info",
)
2023-08-11 23:36:31 +08:00
cols = st.columns(2)
vs_types = list(kbs_config.keys())
vs_type = cols[0].selectbox(
"向量库类型",
vs_types,
index=vs_types.index(DEFAULT_VS_TYPE),
key="vs_type",
)
支持在线 Embeddings, Lite 模式支持所有知识库相关功能 (#1924) 新功能: - 支持在线 Embeddings:zhipu-api, qwen-api, minimax-api, qianfan-api - API 增加 /other/embed_texts 接口 - init_database.py 增加 --embed-model 参数,可以指定使用的嵌入模型(本地或在线均可) - 对于 FAISS 知识库,支持多向量库,默认位置:{KB_PATH}/vector_store/{embed_model} - Lite 模式支持所有知识库相关功能。此模式下最主要的限制是: - 不能使用本地 LLM 和 Embeddings 模型 - 知识库不支持 PDF 文件 - init_database.py 重建知识库时不再默认情况数据库表,增加 clear-tables 参数手动控制。 - API 和 WEBUI 中 score_threshold 参数范围改为 [0, 2],以更好的适应在线嵌入模型 问题修复: - API 中 list_config_models 会删除 ONLINE_LLM_MODEL 中的敏感信息,导致第二轮API请求错误 开发者: - 统一向量库的识别:以(kb_name,embed_model)为判断向量库唯一性的依据,避免 FAISS 知识库缓存加载逻辑错误 - KBServiceFactory.get_service_by_name 中添加 default_embed_model 参数,用于在构建新知识库时设置 embed_model - 优化 kb_service 中 Embeddings 操作: - 统一加载接口: server.utils.load_embeddings,利用全局缓存避免各处 Embeddings 传参 - 统一文本嵌入接口:server.knowledge_base.kb_service.base.[embed_texts, embed_documents] - 重写 normalize 函数,去除对 scikit-learn/scipy 的依赖
2023-10-31 14:26:50 +08:00
if is_lite:
embed_models = list_online_embed_models()
else:
embed_models = list_embed_models() + list_online_embed_models()
2023-08-11 23:36:31 +08:00
embed_model = cols[1].selectbox(
"Embedding 模型",
embed_models,
index=embed_models.index(EMBEDDING_MODEL),
key="embed_model",
)
submit_create_kb = st.form_submit_button(
"新建",
# disabled=not bool(kb_name),
use_container_width=True,
)
if submit_create_kb:
if not kb_name or not kb_name.strip():
st.error(f"知识库名称不能为空!")
elif kb_name in kb_list:
st.error(f"名为 {kb_name} 的知识库已经存在!")
else:
ret = api.create_knowledge_base(
knowledge_base_name=kb_name,
vector_store_type=vs_type,
embed_model=embed_model,
)
2023-08-18 11:47:49 +08:00
st.toast(ret.get("msg", " "))
2023-08-12 01:26:17 +08:00
st.session_state["selected_kb_name"] = kb_name
st.session_state["selected_kb_info"] = kb_info
st.rerun()
2023-08-11 23:36:31 +08:00
elif selected_kb:
kb = selected_kb
st.session_state["selected_kb_info"] = kb_list[kb]['kb_info']
2023-08-11 23:36:31 +08:00
# 上传文件
files = st.file_uploader("上传知识文件:",
2023-08-11 23:36:31 +08:00
[i for ls in LOADER_DICT.values() for i in ls],
accept_multiple_files=True,
)
kb_info = st.text_area("请输入知识库介绍:", value=st.session_state["selected_kb_info"], max_chars=None,
key=None,
help=None, on_change=None, args=None, kwargs=None)
2023-08-11 23:36:31 +08:00
if kb_info != st.session_state["selected_kb_info"]:
st.session_state["selected_kb_info"] = kb_info
api.update_kb_info(kb, kb_info)
2023-09-15 10:58:52 +08:00
# with st.sidebar:
with st.expander(
"文件处理配置",
expanded=True,
):
cols = st.columns(3)
chunk_size = cols[0].number_input("单段文本最大长度:", 1, 1000, CHUNK_SIZE)
chunk_overlap = cols[1].number_input("相邻文本重合长度:", 0, chunk_size, OVERLAP_SIZE)
2023-09-15 10:58:52 +08:00
cols[2].write("")
cols[2].write("")
zh_title_enhance = cols[2].checkbox("开启中文标题加强", ZH_TITLE_ENHANCE)
2023-08-11 23:36:31 +08:00
if st.button(
"添加文件到知识库",
2023-08-11 23:36:31 +08:00
# use_container_width=True,
disabled=len(files) == 0,
):
ret = api.upload_kb_docs(files,
knowledge_base_name=kb,
override=True,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance)
if msg := check_success_msg(ret):
st.toast(msg, icon="")
elif msg := check_error_msg(ret):
st.toast(msg, icon="")
2023-08-11 23:36:31 +08:00
st.divider()
# 知识库详情
# st.info("请选择文件,点击按钮进行操作。")
doc_details = pd.DataFrame(get_kb_file_details(kb))
selected_rows = []
2023-08-11 23:36:31 +08:00
if not len(doc_details):
st.info(f"知识库 `{kb}` 中暂无文件")
else:
st.write(f"知识库 `{kb}` 中已有文件:")
2023-08-12 01:26:17 +08:00
st.info("知识库中包含源文件与向量库,请从下表中选择文件后操作")
2023-08-11 23:36:31 +08:00
doc_details.drop(columns=["kb_name"], inplace=True)
doc_details = doc_details[[
2023-09-15 11:04:23 +08:00
"No", "file_name", "document_loader", "text_splitter", "docs_count", "in_folder", "in_db",
2023-08-11 23:36:31 +08:00
]]
2024-01-31 15:34:54 +08:00
#doc_details["in_folder"] = doc_details["in_folder"].replace(True, "✓").replace(False, "×")
#doc_details["in_db"] = doc_details["in_db"].replace(True, "✓").replace(False, "×")
2023-08-11 23:36:31 +08:00
gb = config_aggrid(
doc_details,
{
2023-08-12 01:26:17 +08:00
("No", "序号"): {},
2023-08-11 23:36:31 +08:00
("file_name", "文档名称"): {},
# ("file_ext", "文档类型"): {},
# ("file_version", "文档版本"): {},
("document_loader", "文档加载器"): {},
("docs_count", "文档数量"): {},
2023-09-15 11:04:23 +08:00
("text_splitter", "分词器"): {},
2023-08-11 23:36:31 +08:00
# ("create_time", "创建时间"): {},
2023-08-12 01:26:17 +08:00
("in_folder", "源文件"): {"cellRenderer": cell_renderer},
("in_db", "向量库"): {"cellRenderer": cell_renderer},
2023-08-11 23:36:31 +08:00
},
"multiple",
)
doc_grid = AgGrid(
doc_details,
gb.build(),
columns_auto_size_mode="FIT_CONTENTS",
theme="alpine",
custom_css={
"#gridToolBar": {"display": "none"},
},
allow_unsafe_jscode=True,
enable_enterprise_modules=False
2023-08-11 23:36:31 +08:00
)
selected_rows = doc_grid.get("selected_rows", [])
cols = st.columns(4)
file_name, file_path = file_exists(kb, selected_rows)
if file_path:
2023-08-11 23:36:31 +08:00
with open(file_path, "rb") as fp:
cols[0].download_button(
"下载选中文档",
fp,
file_name=file_name,
use_container_width=True, )
else:
cols[0].download_button(
"下载选中文档",
"",
disabled=True,
use_container_width=True, )
2023-08-12 01:26:17 +08:00
st.write()
2023-08-11 23:36:31 +08:00
# 将文件分词并加载到向量库中
if cols[1].button(
"重新添加至向量库" if selected_rows and (
pd.DataFrame(selected_rows)["in_db"]).any() else "添加至向量库",
disabled=not file_exists(kb, selected_rows)[0],
2023-08-11 23:36:31 +08:00
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.update_kb_docs(kb,
file_names=file_names,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance)
st.rerun()
2023-08-11 23:36:31 +08:00
# 将文件从向量库中删除,但不删除文件本身。
if cols[2].button(
"从向量库删除",
disabled=not (selected_rows and selected_rows[0]["in_db"]),
2023-08-11 23:36:31 +08:00
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names)
st.rerun()
2023-08-11 23:36:31 +08:00
if cols[3].button(
2023-08-12 01:26:17 +08:00
"从知识库中删除",
2023-08-11 23:36:31 +08:00
type="primary",
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names, delete_content=True)
st.rerun()
2023-08-11 23:36:31 +08:00
st.divider()
2024-01-18 15:44:14 +08:00
cols = st.columns(3)
if cols[0].button(
"依据源文件重建向量库",
help="无需上传文件通过其它方式将文档拷贝到对应知识库content目录下点击本按钮即可重建知识库。",
2024-01-18 15:44:14 +08:00
use_container_width=True,
type="primary",
):
with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
empty = st.empty()
empty.progress(0.0, "")
for d in api.recreate_vector_store(kb,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance):
2024-01-18 15:44:14 +08:00
if msg := check_error_msg(d):
st.toast(msg)
else:
empty.progress(d["finished"] / d["total"], d["msg"])
st.rerun()
if cols[2].button(
"删除知识库",
use_container_width=True,
):
ret = api.delete_knowledge_base(kb)
st.toast(ret.get("msg", " "))
time.sleep(1)
st.rerun()
2023-08-11 23:36:31 +08:00
with st.sidebar:
keyword = st.text_input("查询关键字")
top_k = st.slider("匹配条数", 1, 100, 3)
2024-01-18 15:44:14 +08:00
# st.write("文件内文档列表。双击进行修改,在删除列填入 Y 可删除对应行。")
# docs = []
# df = pd.DataFrame([], columns=["seq", "id", "content", "source"])
# if selected_rows:
# file_name = selected_rows[0]["file_name"]
# docs = api.search_kb_docs(knowledge_base_name=selected_kb, file_name=file_name)
# data = [
# {"seq": i + 1, "id": x["id"], "page_content": x["page_content"], "source": x["metadata"].get("source"),
# "type": x["type"],
# "metadata": json.dumps(x["metadata"], ensure_ascii=False),
# "to_del": "",
# } for i, x in enumerate(docs)]
2024-01-18 15:44:14 +08:00
# df = pd.DataFrame(data)
# # gb = GridOptionsBuilder.from_dataframe(df)
# # gb.configure_columns(["id", "source", "type", "metadata"], hide=True)
# # gb.configure_column("seq", "No.", width=50)
# # gb.configure_column("page_content", "内容", editable=True, autoHeight=True, wrapText=True, flex=1,
# # cellEditor="agLargeTextCellEditor", cellEditorPopup=True)
# # gb.configure_column("to_del", "删除", editable=True, width=50, wrapHeaderText=True,
# # cellEditor="agCheckboxCellEditor", cellRender="agCheckboxCellRenderer")
# # gb.configure_selection()
# # edit_docs = AgGrid(df, gb.build())
2024-01-18 15:44:14 +08:00
# if st.button("保存更改"):
# origin_docs = {
# x["id"]: {"page_content": x["page_content"], "type": x["type"], "metadata": x["metadata"]} for x in
# docs}
2024-01-18 15:44:14 +08:00
# changed_docs = []
# for index, row in edit_docs.data.iterrows():
# origin_doc = origin_docs[row["id"]]
# if row["page_content"] != origin_doc["page_content"]:
# if row["to_del"] not in ["Y", "y", 1]:
# changed_docs.append({
# "page_content": row["page_content"],
# "type": row["type"],
# "metadata": json.loads(row["metadata"]),
# })
2024-01-18 15:44:14 +08:00
# if changed_docs:
# if api.update_kb_docs(knowledge_base_name=selected_kb,
# file_names=[file_name],
# docs={file_name: changed_docs}):
2024-01-18 15:44:14 +08:00
# st.toast("更新文档成功")
# else:
# st.toast("更新文档失败")