2023-04-15 14:43:12 +08:00
|
|
|
import json
|
2023-03-31 20:09:40 +08:00
|
|
|
from langchain.llms.base import LLM
|
|
|
|
|
from typing import Optional, List
|
|
|
|
|
from langchain.llms.utils import enforce_stop_tokens
|
2023-04-15 14:43:12 +08:00
|
|
|
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
2023-04-07 10:45:44 +08:00
|
|
|
import torch
|
2023-04-13 23:01:52 +08:00
|
|
|
from configs.model_config import LLM_DEVICE
|
2023-04-07 10:45:44 +08:00
|
|
|
|
2023-04-18 15:54:51 +08:00
|
|
|
from typing import Dict, Tuple, Union, Optional
|
|
|
|
|
|
2023-04-13 23:01:52 +08:00
|
|
|
DEVICE = LLM_DEVICE
|
2023-04-11 21:55:42 +08:00
|
|
|
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
2023-04-07 10:45:44 +08:00
|
|
|
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def torch_gc():
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
with torch.cuda.device(CUDA_DEVICE):
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
torch.cuda.ipc_collect()
|
|
|
|
|
|
2023-03-31 20:09:40 +08:00
|
|
|
|
2023-04-18 15:54:51 +08:00
|
|
|
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
|
|
|
|
# transformer.word_embeddings 占用1层
|
|
|
|
|
# transformer.final_layernorm 和 lm_head 占用1层
|
|
|
|
|
# transformer.layers 占用 28 层
|
|
|
|
|
# 总共30层分配到num_gpus张卡上
|
|
|
|
|
num_trans_layers = 28
|
|
|
|
|
per_gpu_layers = 30 / num_gpus
|
|
|
|
|
|
|
|
|
|
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
|
|
|
|
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
|
|
|
|
# linux下 model.device 会被设置成 lm_head.device
|
|
|
|
|
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
|
|
|
|
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
|
|
|
|
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
|
|
|
|
device_map = {'transformer.word_embeddings': 0,
|
|
|
|
|
'transformer.final_layernorm': 0, 'lm_head': 0}
|
|
|
|
|
|
|
|
|
|
used = 2
|
|
|
|
|
gpu_target = 0
|
|
|
|
|
for i in range(num_trans_layers):
|
|
|
|
|
if used >= per_gpu_layers:
|
|
|
|
|
gpu_target += 1
|
|
|
|
|
used = 0
|
|
|
|
|
assert gpu_target < num_gpus
|
|
|
|
|
device_map[f'transformer.layers.{i}'] = gpu_target
|
|
|
|
|
used += 1
|
|
|
|
|
|
|
|
|
|
return device_map
|
|
|
|
|
|
|
|
|
|
|
2023-03-31 20:09:40 +08:00
|
|
|
class ChatGLM(LLM):
|
|
|
|
|
max_token: int = 10000
|
2023-04-11 21:55:42 +08:00
|
|
|
temperature: float = 0.01
|
2023-03-31 20:09:40 +08:00
|
|
|
top_p = 0.9
|
|
|
|
|
history = []
|
2023-04-10 22:55:22 +08:00
|
|
|
tokenizer: object = None
|
|
|
|
|
model: object = None
|
|
|
|
|
history_len: int = 10
|
2023-03-31 20:09:40 +08:00
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
|
return "ChatGLM"
|
|
|
|
|
|
|
|
|
|
def _call(self,
|
|
|
|
|
prompt: str,
|
|
|
|
|
stop: Optional[List[str]] = None) -> str:
|
2023-04-10 22:55:22 +08:00
|
|
|
response, _ = self.model.chat(
|
|
|
|
|
self.tokenizer,
|
2023-03-31 20:09:40 +08:00
|
|
|
prompt,
|
2023-04-13 14:13:58 +08:00
|
|
|
history=self.history[-self.history_len:] if self.history_len>0 else [],
|
2023-03-31 20:09:40 +08:00
|
|
|
max_length=self.max_token,
|
|
|
|
|
temperature=self.temperature,
|
|
|
|
|
)
|
2023-04-07 10:46:02 +08:00
|
|
|
torch_gc()
|
2023-03-31 20:09:40 +08:00
|
|
|
if stop is not None:
|
|
|
|
|
response = enforce_stop_tokens(response, stop)
|
2023-04-10 22:55:22 +08:00
|
|
|
self.history = self.history+[[None, response]]
|
2023-03-31 20:09:40 +08:00
|
|
|
return response
|
2023-04-09 23:23:11 +08:00
|
|
|
|
2023-04-21 08:35:21 +08:00
|
|
|
def chat(self,
|
|
|
|
|
prompt: str) -> str:
|
|
|
|
|
response, _ = self.model.chat(
|
|
|
|
|
self.tokenizer,
|
|
|
|
|
prompt,
|
|
|
|
|
history=[],#self.history[-self.history_len:] if self.history_len>0 else
|
|
|
|
|
max_length=self.max_token,
|
|
|
|
|
temperature=self.temperature,
|
|
|
|
|
)
|
|
|
|
|
torch_gc()
|
|
|
|
|
self.history = self.history+[[None, response]]
|
|
|
|
|
return response
|
|
|
|
|
|
2023-04-13 23:01:52 +08:00
|
|
|
def load_model(self,
|
|
|
|
|
model_name_or_path: str = "THUDM/chatglm-6b",
|
2023-04-18 15:54:51 +08:00
|
|
|
llm_device=LLM_DEVICE,
|
2023-04-19 23:02:47 +08:00
|
|
|
use_ptuning_v2=False,
|
2023-04-18 15:54:51 +08:00
|
|
|
device_map: Optional[Dict[str, int]] = None,
|
|
|
|
|
**kwargs):
|
2023-04-10 22:55:22 +08:00
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
model_name_or_path,
|
|
|
|
|
trust_remote_code=True
|
|
|
|
|
)
|
2023-04-15 14:43:12 +08:00
|
|
|
|
|
|
|
|
model_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
if use_ptuning_v2:
|
|
|
|
|
try:
|
|
|
|
|
prefix_encoder_file = open('ptuning-v2/config.json', 'r')
|
|
|
|
|
prefix_encoder_config = json.loads(prefix_encoder_file.read())
|
|
|
|
|
prefix_encoder_file.close()
|
|
|
|
|
model_config.pre_seq_len = prefix_encoder_config['pre_seq_len']
|
|
|
|
|
model_config.prefix_projection = prefix_encoder_config['prefix_projection']
|
|
|
|
|
except Exception:
|
|
|
|
|
print("加载PrefixEncoder config.json失败")
|
|
|
|
|
|
2023-04-13 23:01:52 +08:00
|
|
|
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
|
2023-04-18 15:54:51 +08:00
|
|
|
# 根据当前设备GPU数量决定是否进行多卡部署
|
|
|
|
|
num_gpus = torch.cuda.device_count()
|
|
|
|
|
if num_gpus < 2 and device_map is None:
|
|
|
|
|
self.model = (
|
|
|
|
|
AutoModel.from_pretrained(
|
2023-04-19 23:02:47 +08:00
|
|
|
model_name_or_path,
|
|
|
|
|
config=model_config,
|
2023-04-18 15:54:51 +08:00
|
|
|
trust_remote_code=True,
|
|
|
|
|
**kwargs)
|
|
|
|
|
.half()
|
|
|
|
|
.cuda()
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
from accelerate import dispatch_model
|
|
|
|
|
|
|
|
|
|
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, **kwargs).half()
|
|
|
|
|
# 可传入device_map自定义每张卡的部署情况
|
|
|
|
|
if device_map is None:
|
|
|
|
|
device_map = auto_configure_device_map(num_gpus)
|
|
|
|
|
|
|
|
|
|
self.model = dispatch_model(model, device_map=device_map)
|
2023-04-11 21:55:42 +08:00
|
|
|
else:
|
|
|
|
|
self.model = (
|
|
|
|
|
AutoModel.from_pretrained(
|
|
|
|
|
model_name_or_path,
|
2023-04-15 14:43:12 +08:00
|
|
|
config=model_config,
|
2023-04-11 21:55:42 +08:00
|
|
|
trust_remote_code=True)
|
|
|
|
|
.float()
|
2023-04-13 23:01:52 +08:00
|
|
|
.to(llm_device)
|
2023-04-11 21:55:42 +08:00
|
|
|
)
|
2023-04-15 14:43:12 +08:00
|
|
|
|
|
|
|
|
if use_ptuning_v2:
|
|
|
|
|
try:
|
|
|
|
|
prefix_state_dict = torch.load('ptuning-v2/pytorch_model.bin')
|
|
|
|
|
new_prefix_state_dict = {}
|
|
|
|
|
for k, v in prefix_state_dict.items():
|
|
|
|
|
if k.startswith("transformer.prefix_encoder."):
|
|
|
|
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
|
|
|
|
self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
|
|
|
|
self.model.transformer.prefix_encoder.float()
|
|
|
|
|
except Exception:
|
|
|
|
|
print("加载PrefixEncoder模型参数失败")
|
|
|
|
|
|
2023-04-11 21:55:42 +08:00
|
|
|
self.model = self.model.eval()
|