169 lines
6.6 KiB
Python
169 lines
6.6 KiB
Python
|
|
from fastapi import Body
|
|||
|
|
from configs import (DEFAULT_VS_TYPE, EMBEDDING_MODEL,
|
|||
|
|
OVERLAP_SIZE,
|
|||
|
|
logger, log_verbose, )
|
|||
|
|
from server.knowledge_base.utils import (list_files_from_folder)
|
|||
|
|
from fastapi.responses import StreamingResponse
|
|||
|
|
import json
|
|||
|
|
from server.knowledge_base.kb_service.base import KBServiceFactory
|
|||
|
|
from typing import List, Optional
|
|||
|
|
from server.knowledge_base.kb_summary.base import KBSummaryService
|
|||
|
|
from server.knowledge_base.kb_summary.summary_chunk import SummaryAdapter
|
|||
|
|
from server.utils import wrap_done, get_ChatOpenAI
|
|||
|
|
from configs import LLM_MODELS, TEMPERATURE
|
|||
|
|
|
|||
|
|
|
|||
|
|
def recreate_summary_vector_store(
|
|||
|
|
knowledge_base_name: str = Body(..., examples=["samples"]),
|
|||
|
|
allow_empty_kb: bool = Body(True),
|
|||
|
|
vs_type: str = Body(DEFAULT_VS_TYPE),
|
|||
|
|
embed_model: str = Body(EMBEDDING_MODEL),
|
|||
|
|
file_description: str = Body(''),
|
|||
|
|
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
|
|||
|
|
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
|||
|
|
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
|||
|
|
):
|
|||
|
|
"""
|
|||
|
|
重建文件摘要
|
|||
|
|
:param max_tokens:
|
|||
|
|
:param model_name:
|
|||
|
|
:param temperature:
|
|||
|
|
:param file_description:
|
|||
|
|
:param knowledge_base_name:
|
|||
|
|
:param allow_empty_kb:
|
|||
|
|
:param vs_type:
|
|||
|
|
:param embed_model:
|
|||
|
|
:return:
|
|||
|
|
"""
|
|||
|
|
|
|||
|
|
def output():
|
|||
|
|
|
|||
|
|
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
|||
|
|
if not kb.exists() and not allow_empty_kb:
|
|||
|
|
yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
|
|||
|
|
else:
|
|||
|
|
# 重新创建知识库
|
|||
|
|
kb_summary = KBSummaryService(knowledge_base_name, embed_model)
|
|||
|
|
kb_summary.drop_kb_summary()
|
|||
|
|
kb_summary.create_kb_summary()
|
|||
|
|
|
|||
|
|
llm = get_ChatOpenAI(
|
|||
|
|
model_name=model_name,
|
|||
|
|
temperature=temperature,
|
|||
|
|
max_tokens=max_tokens,
|
|||
|
|
)
|
|||
|
|
reduce_llm = get_ChatOpenAI(
|
|||
|
|
model_name=model_name,
|
|||
|
|
temperature=temperature,
|
|||
|
|
max_tokens=max_tokens,
|
|||
|
|
)
|
|||
|
|
# 文本摘要适配器
|
|||
|
|
summary = SummaryAdapter.form_summary(llm=llm,
|
|||
|
|
reduce_llm=reduce_llm,
|
|||
|
|
overlap_size=OVERLAP_SIZE)
|
|||
|
|
files = list_files_from_folder(knowledge_base_name)
|
|||
|
|
|
|||
|
|
i = 0
|
|||
|
|
for i, file_name in enumerate(files):
|
|||
|
|
|
|||
|
|
doc_infos = kb.list_docs(file_name=file_name)
|
|||
|
|
docs = summary.summarize(kb_name=knowledge_base_name,
|
|||
|
|
file_description=file_description,
|
|||
|
|
docs=doc_infos)
|
|||
|
|
|
|||
|
|
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
|
|||
|
|
if status_kb_summary:
|
|||
|
|
logger.info(f"({i + 1} / {len(files)}): {file_name} 向量化总结完成")
|
|||
|
|
yield json.dumps({
|
|||
|
|
"code": 200,
|
|||
|
|
"msg": f"({i + 1} / {len(files)}): {file_name}",
|
|||
|
|
"total": len(files),
|
|||
|
|
"finished": i + 1,
|
|||
|
|
"doc": file_name,
|
|||
|
|
}, ensure_ascii=False)
|
|||
|
|
else:
|
|||
|
|
|
|||
|
|
msg = f"知识库'{knowledge_base_name}'总结文件‘{file_name}’时出错。已跳过。"
|
|||
|
|
logger.error(msg)
|
|||
|
|
yield json.dumps({
|
|||
|
|
"code": 500,
|
|||
|
|
"msg": msg,
|
|||
|
|
})
|
|||
|
|
i += 1
|
|||
|
|
|
|||
|
|
return StreamingResponse(output(), media_type="text/event-stream")
|
|||
|
|
|
|||
|
|
|
|||
|
|
def summary_file_to_vector_store(
|
|||
|
|
knowledge_base_name: str = Body(..., examples=["samples"]),
|
|||
|
|
file_name: str = Body(..., examples=["test.pdf"]),
|
|||
|
|
allow_empty_kb: bool = Body(True),
|
|||
|
|
vs_type: str = Body(DEFAULT_VS_TYPE),
|
|||
|
|
embed_model: str = Body(EMBEDDING_MODEL),
|
|||
|
|
file_description: str = Body(''),
|
|||
|
|
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
|
|||
|
|
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
|||
|
|
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
|||
|
|
):
|
|||
|
|
"""
|
|||
|
|
文件摘要
|
|||
|
|
:param model_name:
|
|||
|
|
:param max_tokens:
|
|||
|
|
:param temperature:
|
|||
|
|
:param file_description:
|
|||
|
|
:param file_name:
|
|||
|
|
:param knowledge_base_name:
|
|||
|
|
:param allow_empty_kb:
|
|||
|
|
:param vs_type:
|
|||
|
|
:param embed_model:
|
|||
|
|
:return:
|
|||
|
|
"""
|
|||
|
|
|
|||
|
|
def output():
|
|||
|
|
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
|||
|
|
if not kb.exists() and not allow_empty_kb:
|
|||
|
|
yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
|
|||
|
|
else:
|
|||
|
|
# 重新创建知识库
|
|||
|
|
kb_summary = KBSummaryService(knowledge_base_name, embed_model)
|
|||
|
|
kb_summary.create_kb_summary()
|
|||
|
|
|
|||
|
|
llm = get_ChatOpenAI(
|
|||
|
|
model_name=model_name,
|
|||
|
|
temperature=temperature,
|
|||
|
|
max_tokens=max_tokens,
|
|||
|
|
)
|
|||
|
|
reduce_llm = get_ChatOpenAI(
|
|||
|
|
model_name=model_name,
|
|||
|
|
temperature=temperature,
|
|||
|
|
max_tokens=max_tokens,
|
|||
|
|
)
|
|||
|
|
# 文本摘要适配器
|
|||
|
|
summary = SummaryAdapter.form_summary(llm=llm,
|
|||
|
|
reduce_llm=reduce_llm,
|
|||
|
|
overlap_size=OVERLAP_SIZE)
|
|||
|
|
|
|||
|
|
doc_infos = kb.list_docs(file_name=file_name)
|
|||
|
|
docs = summary.summarize(kb_name=knowledge_base_name,
|
|||
|
|
file_description=file_description,
|
|||
|
|
docs=doc_infos)
|
|||
|
|
|
|||
|
|
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
|
|||
|
|
if status_kb_summary:
|
|||
|
|
logger.info(f" {file_name} 向量化总结完成")
|
|||
|
|
yield json.dumps({
|
|||
|
|
"code": 200,
|
|||
|
|
"msg": f"{file_name} 向量化总结完成",
|
|||
|
|
"doc": file_name,
|
|||
|
|
}, ensure_ascii=False)
|
|||
|
|
else:
|
|||
|
|
|
|||
|
|
msg = f"知识库'{knowledge_base_name}'总结文件‘{file_name}’时出错。已跳过。"
|
|||
|
|
logger.error(msg)
|
|||
|
|
yield json.dumps({
|
|||
|
|
"code": 500,
|
|||
|
|
"msg": msg,
|
|||
|
|
})
|
|||
|
|
|
|||
|
|
return StreamingResponse(output(), media_type="text/event-stream")
|