Langchain-Chatchat/agent/agent模式测试.ipynb

1179 lines
109 KiB
Plaintext
Raw Normal View History

2023-05-18 23:07:15 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "d2ff171c-f5f8-4590-9ce0-21c87e3d5b39",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/')\n",
"from langchain.llms.base import LLM\n",
"import torch\n",
"import transformers \n",
"import models.shared as shared \n",
"from abc import ABC\n",
"\n",
"from langchain.llms.base import LLM\n",
"import random\n",
"from transformers.generation.logits_process import LogitsProcessor\n",
"from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList\n",
"from typing import Optional, List, Dict, Any\n",
"from models.loader import LoaderCheckPoint\n",
"from models.extensions.callback import (Iteratorize, Stream, FixedLengthQueue) \n",
"from models.base import (BaseAnswer,\n",
" AnswerResult,\n",
" AnswerResultStream,\n",
" AnswerResultQueueSentinelTokenListenerQueue)\n",
"from langchain.callbacks.manager import (\n",
" CallbackManagerForLLMRun\n",
")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "68978c38-c0e9-4ae9-ba90-9c02aca335be",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Overriding torch_dtype=None with `torch_dtype=torch.float16` due to requirements of `bitsandbytes` to enable model loading in mixed int8. Either pass torch_dtype=torch.float16 or don't pass this argument at all to remove this warning.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading vicuna-13b-hf...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "999ea6baab394a6f9b2b4a815ead7ef4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded the model in 182.64 seconds.\n"
]
}
],
"source": [
"import asyncio\n",
"from argparse import Namespace\n",
"from models.loader.args import parser\n",
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents import AgentType\n",
" \n",
"args = parser.parse_args(args=['--model-dir', '/media/checkpoint/', '--model', 'vicuna-13b-hf', '--no-remote-model', '--load-in-8bit'])\n",
"\n",
"args_dict = vars(args)\n",
"\n",
"shared.loaderCheckPoint = LoaderCheckPoint(args_dict)\n",
"torch.cuda.empty_cache()\n",
"shared.loaderCheckPoint.unload_model()\n",
"shared.loaderCheckPoint.reload_model() \n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c8e4a58d-1a3a-484a-8417-bcec0eb7170e",
"metadata": {},
"outputs": [],
"source": [
"from abc import ABC\n",
"\n",
"from langchain.llms.base import LLM\n",
"import random\n",
"import torch\n",
"import transformers\n",
"from transformers.generation.logits_process import LogitsProcessor\n",
"from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList\n",
"from typing import Optional, List, Dict, Any\n",
"from models.loader import LoaderCheckPoint\n",
"from models.extensions.callback import (Iteratorize, Stream, FixedLengthQueue)\n",
"import models.shared as shared\n",
"from models.base import (BaseAnswer,\n",
" AnswerResult,\n",
" AnswerResultStream,\n",
" AnswerResultQueueSentinelTokenListenerQueue)\n",
"from langchain.callbacks.manager import (\n",
" CallbackManagerForLLMRun\n",
")\n",
"\n",
"\n",
"def _streaming_response_template() -> Dict[str, Any]:\n",
" \"\"\"\n",
" :return: 响应结构\n",
" \"\"\"\n",
" return {\n",
" \"text\": \"\"\n",
" }\n",
"\n",
"\n",
"def _update_response(response: Dict[str, Any], stream_response: str) -> None:\n",
" \"\"\"Update response from the stream response.\"\"\"\n",
" response[\"text\"] += stream_response\n",
"\n",
"\n",
"class InvalidScoreLogitsProcessor(LogitsProcessor):\n",
" def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:\n",
" if torch.isnan(scores).any() or torch.isinf(scores).any():\n",
" scores.zero_()\n",
" scores[..., 5] = 5e4\n",
" return scores\n",
"\n",
"\n",
"class LLamaLLM(BaseAnswer, LLM, ABC):\n",
" checkPoint: LoaderCheckPoint = None\n",
" history = []\n",
" history_len: int = 3\n",
" max_new_tokens: int = 500\n",
" num_beams: int = 1\n",
" temperature: float = 0.5\n",
" top_p: float = 0.4\n",
" top_k: int = 10\n",
" repetition_penalty: float = 1.12\n",
" encoder_repetition_penalty: int = 1\n",
" min_length: int = 0\n",
" logits_processor: LogitsProcessorList = None\n",
" stopping_criteria: Optional[StoppingCriteriaList] = None\n",
"\n",
" state: object = {'max_new_tokens': 50,\n",
" 'seed': 1,\n",
" 'temperature': 0, 'top_p': 0.1,\n",
" 'top_k': 40, 'typical_p': 1,\n",
" 'repetition_penalty': 1.18,\n",
" 'encoder_repetition_penalty': 1,\n",
" 'no_repeat_ngram_size': 0,\n",
" 'min_length': 0,\n",
" 'penalty_alpha': 0,\n",
" 'num_beams': 1,\n",
" 'length_penalty': 1,\n",
" 'early_stopping': False, 'add_bos_token': True, 'ban_eos_token': False,\n",
" 'truncation_length': 2048, 'custom_stopping_strings': '',\n",
" 'cpu_memory': 0, 'auto_devices': False, 'disk': False, 'cpu': False, 'bf16': False,\n",
" 'load_in_8bit': False, 'wbits': 'None', 'groupsize': 'None', 'model_type': 'None',\n",
" 'pre_layer': 0, 'gpu_memory_0': 0}\n",
"\n",
" def __init__(self, checkPoint: LoaderCheckPoint = None):\n",
" super().__init__()\n",
" self.checkPoint = checkPoint\n",
"\n",
" @property\n",
" def _llm_type(self) -> str:\n",
" return \"LLamaLLM\"\n",
"\n",
" @property\n",
" def _check_point(self) -> LoaderCheckPoint:\n",
" return self.checkPoint\n",
"\n",
" def encode(self, prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):\n",
" input_ids = self.checkPoint.tokenizer.encode(str(prompt), return_tensors='pt',\n",
" add_special_tokens=add_special_tokens)\n",
" # This is a hack for making replies more creative.\n",
" if not add_bos_token and input_ids[0][0] == self.checkPoint.tokenizer.bos_token_id:\n",
" input_ids = input_ids[:, 1:]\n",
"\n",
" # Llama adds this extra token when the first character is '\\n', and this\n",
" # compromises the stopping criteria, so we just remove it\n",
" if type(self.checkPoint.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:\n",
" input_ids = input_ids[:, 1:]\n",
"\n",
" # Handling truncation\n",
" if truncation_length is not None:\n",
" input_ids = input_ids[:, -truncation_length:]\n",
"\n",
" return input_ids.cuda()\n",
"\n",
" def decode(self, output_ids):\n",
" reply = self.checkPoint.tokenizer.decode(output_ids, skip_special_tokens=True)\n",
" return reply\n",
"\n",
" def generate_with_callback(self, callback=None, **kwargs):\n",
" self.checkPoint.clear_torch_cache()\n",
" kwargs['stopping_criteria'].append(Stream(callback_func=callback))\n",
" with torch.no_grad():\n",
" self.checkPoint.model.generate(**kwargs)\n",
" print(\"方法结束\")\n",
"\n",
" def generate_with_streaming(self, **kwargs):\n",
" return Iteratorize(self.generate_with_callback, kwargs)\n",
"\n",
" # 将历史对话数组转换为文本格式\n",
" def history_to_text(self, query):\n",
" formatted_history = ''\n",
" history = self.history[-self.history_len:] if self.history_len > 0 else []\n",
" for i, (old_query, response) in enumerate(history):\n",
" formatted_history += \"[Round {}]\\n问{}\\n答{}\\n\".format(i, old_query, response)\n",
" formatted_history += \"[Round {}]\\n问{}\\n答\".format(len(history), query)\n",
" return formatted_history\n",
"\n",
" def prepare_inputs_for_generation(self,\n",
" input_ids: torch.LongTensor):\n",
" \"\"\"\n",
" 预生成注意力掩码和 输入序列中每个位置的索引的张量\n",
" # TODO 没有思路\n",
" :return:\n",
" \"\"\"\n",
"\n",
" mask_positions = torch.zeros((1, input_ids.shape[1]), dtype=input_ids.dtype).to(self.checkPoint.model.device)\n",
"\n",
" attention_mask = self.get_masks(input_ids, input_ids.device)\n",
"\n",
" position_ids = self.get_position_ids(\n",
" input_ids,\n",
" device=input_ids.device,\n",
" mask_positions=mask_positions\n",
" )\n",
"\n",
" return input_ids, position_ids, attention_mask\n",
"\n",
" def get_position_ids(self, input_ids: torch.LongTensor, mask_positions, device):\n",
" \"\"\"\n",
" 注意力偏移量\n",
" :param input_ids:\n",
" :param mask_positions:\n",
" :param device:\n",
" :param use_gmasks:\n",
" :return:\n",
" \"\"\"\n",
" batch_size, seq_length = input_ids.shape\n",
" context_lengths = [seq.tolist().index(self.checkPoint.model_config.bos_token_id) for seq in input_ids]\n",
" position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)\n",
" for i, context_length in enumerate(context_lengths):\n",
" position_ids[i, context_length:] = mask_positions[i]\n",
" block_position_ids = [torch.cat((\n",
" torch.zeros(context_length, dtype=torch.long, device=device),\n",
" torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1\n",
" )) for context_length in context_lengths]\n",
" block_position_ids = torch.stack(block_position_ids, dim=0)\n",
" position_ids = torch.stack((position_ids, block_position_ids), dim=1)\n",
" return position_ids\n",
"\n",
" def get_masks(self, input_ids, device):\n",
" \"\"\"\n",
" 获取注意力掩码\n",
" :param input_ids:\n",
" :param device:\n",
" :return:\n",
" \"\"\"\n",
" batch_size, seq_length = input_ids.shape\n",
" context_lengths = [seq.tolist().index(self.checkPoint.model_config.bos_token_id) for seq in input_ids]\n",
" attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)\n",
" attention_mask.tril_()\n",
" for i, context_length in enumerate(context_lengths):\n",
" attention_mask[i, :, :context_length] = 1\n",
" attention_mask.unsqueeze_(1)\n",
" attention_mask = (attention_mask < 0.5).bool()\n",
" return attention_mask\n",
"\n",
" def generate_softprompt_history_tensors(self, query):\n",
" \"\"\"\n",
" 历史对话软提示\n",
" 这段代码首先定义了一个名为 history_to_text 的函数,用于将 self.history\n",
" 数组转换为所需的文本格式。然后,我们将格式化后的历史文本\n",
" 再用 self.encode 将其转换为向量表示。最后,将历史对话向量与当前输入的对话向量拼接在一起。\n",
" :return:\n",
" \"\"\"\n",
"\n",
" # 对话内容\n",
" # 处理历史对话\n",
" formatted_history = self.history_to_text(query)\n",
" return formatted_history\n",
"\n",
" def _call(self,\n",
" prompt: str,\n",
" stop: Optional[List[str]] = None,\n",
" run_manager: Optional[CallbackManagerForLLMRun] = None) -> str:\n",
" print(f\"__call:{prompt}\")\n",
" if self.logits_processor is None:\n",
" self.logits_processor = LogitsProcessorList()\n",
" self.logits_processor.append(InvalidScoreLogitsProcessor())\n",
"\n",
" gen_kwargs = {\n",
" \"max_new_tokens\": self.max_new_tokens,\n",
" \"num_beams\": self.num_beams,\n",
" \"top_p\": self.top_p,\n",
" \"top_k\": self.top_k,\n",
" \"repetition_penalty\": self.repetition_penalty,\n",
" \"encoder_repetition_penalty\": self.encoder_repetition_penalty,\n",
" \"min_length\": self.min_length,\n",
" \"temperature\": self.temperature,\n",
" \"logits_processor\": self.logits_processor}\n",
"\n",
" # 向量拼接\n",
" input_ids = self.encode(prompt, add_bos_token=self.state['add_bos_token'], truncation_length=self.max_new_tokens)\n",
" # input_ids, position_ids, attention_mask = self.prepare_inputs_for_generation(input_ids=filler_input_ids)\n",
"\n",
" # 对话模型prompt\n",
" gen_kwargs.update({'inputs': input_ids})\n",
" # 注意力掩码\n",
" # gen_kwargs.update({'attention_mask': attention_mask})\n",
" # gen_kwargs.update({'position_ids': position_ids})\n",
" if self.stopping_criteria is None:\n",
" self.stopping_criteria = transformers.StoppingCriteriaList()\n",
" # 观测输出\n",
" gen_kwargs.update({'stopping_criteria': self.stopping_criteria})\n",
" shared.stop_everything = False\n",
" stopped = False\n",
" response_template = _streaming_response_template()\n",
"\n",
" # TODO 此流输出方法需要重写!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n",
" # stopping_criteria方法不可控制 迭代器的变量无法共享\n",
" with self.generate_with_streaming(**gen_kwargs) as generator:\n",
" last_reply_len = 0\n",
" reply_index = 0\n",
" # Create a FixedLengthQueue with the desired stop sequence and a maximum length.\n",
" queue = FixedLengthQueue(stop)\n",
" for output in generator:\n",
" new_tokens = len(output) - len(input_ids[0])\n",
" reply = self.decode(output[-new_tokens:])\n",
"\n",
" new_reply = len(reply) - last_reply_len\n",
" output_reply = reply[-new_reply:]\n",
" queue.add(reply_index, output_reply)\n",
" queue.contains_replace_sequence()\n",
" if stop:\n",
" pos = queue.contains_stop_sequence()\n",
" if pos != -1:\n",
" shared.stop_everything = True\n",
" stopped = True\n",
"\n",
" #print(f\"{reply_index}reply {output_reply}\")\n",
" english_reply = queue.put_replace_out(reply_index)\n",
" #print(f\"{reply_index}english_reply {english_reply}\")\n",
" _update_response(response_template, english_reply)\n",
" last_reply_len = len(reply)\n",
"\n",
" reply_index += 1\n",
" if new_tokens == self.max_new_tokens - 1 or stopped:\n",
" break\n",
"\n",
" response = response_template['text']\n",
" print(f\"response:{response}\")\n",
" self.history = self.history + [[None, response]]\n",
" return response\n",
"\n",
" def _generate_answer(self, prompt: str,\n",
" history: List[List[str]] = [],\n",
" streaming: bool = False,\n",
" generate_with_callback: AnswerResultStream = None) -> None:\n",
" if history:\n",
" self.history = history\n",
" # Create the StoppingCriteriaList with the stopping strings\n",
" self.stopping_criteria = transformers.StoppingCriteriaList()\n",
" # 定义模型stopping_criteria 队列,在每次响应时将 torch.LongTensor, torch.FloatTensor同步到AnswerResult\n",
" listenerQueue = AnswerResultQueueSentinelTokenListenerQueue()\n",
" self.stopping_criteria.append(listenerQueue)\n",
" # TODO 需要实现chat对话模块和注意力模型目前_call为langchain的LLM拓展的api默认为无提示词模式如果需要操作注意力模型可以参考chat_glm的实现\n",
" softprompt = self.generate_softprompt_history_tensors(prompt)\n",
" response = self._call(prompt=softprompt, stop=['\\n###'])\n",
" answer_result = AnswerResult()\n",
" answer_result.history = self.history\n",
" if listenerQueue.listenerQueue.__len__() > 0:\n",
" answer_result.listenerToken = listenerQueue.listenerQueue.pop()\n",
" answer_result.llm_output = {\"answer\": response}\n",
" generate_with_callback(answer_result)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "306450e6-b1fd-4c9c-9083-7419094a14f5",
"metadata": {},
"outputs": [],
"source": [
"\n",
"llm_model_ins = LLamaLLM(checkPoint=shared.loaderCheckPoint) "
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7180ae6a-7050-48a0-b89a-82e51bec7db1",
"metadata": {},
"outputs": [],
"source": [
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
"from langchain.prompts import PromptTemplate\n",
"\n",
"template = \"\"\"This is a conversation between a human and a bot:\n",
"\n",
"{chat_history}\n",
"\n",
"Write a summary of the conversation for {input}:\n",
"\"\"\"\n",
"\n",
"prompt = PromptTemplate(\n",
" input_variables=[\"input\", \"chat_history\"],\n",
" template=template\n",
")\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\")\n",
"readonlymemory = ReadOnlySharedMemory(memory=memory)\n",
"summry_chain = LLMChain(\n",
" llm=llm_model_ins,\n",
" prompt=prompt,\n",
" verbose=True,\n",
" memory=readonlymemory, # use the read-only memory to prevent the tool from modifying the memory\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8516d438-8f9c-4cb7-b921-a7ee216648d5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import ZeroShotAgent, Tool, AgentExecutor\n",
"from typing import List, Set\n",
"\n",
"\n",
"class CustomLLMSingleActionAgent(ZeroShotAgent):\n",
" allowed_tools: List[str]\n",
"\n",
" def __init__(self, *args, **kwargs):\n",
" super(CustomLLMSingleActionAgent, self).__init__(*args, **kwargs)\n",
" self.allowed_tools = kwargs['allowed_tools']\n",
"\n",
" def get_allowed_tools(self) -> Set[str]:\n",
" return set(self.allowed_tools)\n",
" \n",
" \n",
"tools = [ \n",
" Tool(\n",
" name=\"Summary\",\n",
" func=summry_chain.run,\n",
" description=\"useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\"\n",
" )\n",
" ]\n",
"\n",
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
"suffix = \"\"\"Begin!\n",
" \n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\"\n",
"\n",
"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools,\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
" input_variables=[\"input\", \"agent_scratchpad\"]\n",
")\n",
"tool_names = [tool.name for tool in tools]\n",
"llm_chain = LLMChain(llm=llm_model_ins, prompt=prompt)\n",
"agent = CustomLLMSingleActionAgent(llm_chain=llm_chain, tools=tools, allowed_tools=tool_names)\n",
"agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "233c3097-66cb-48b0-8de7-d34177e60bd6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"__call:Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\n",
"\n",
"Summary: useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Summary]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
" \n",
"Question: 你好\n",
"\n",
"response:Thought: 我必<E68891><E5BF85>hought: 我必须回<E9A1BB><E59B9E>hought: 我必须回答这个问题。\n",
"Action: 问<><E997AE>hought: 我必须回答这个问题。\n",
"Action: 问她想知道<E79FA5><E98193>hought: 我必须回答这个问题。\n",
"Action: 问她想知道什么。\n",
"Action Input: 没有需要的输入。\n",
"Observation:\n",
"__call:Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\n",
"\n",
"Summary: useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Summary]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
" \n",
"Question: 你好\n",
"Thought: 我必<E68891><E5BF85>hought: 我必须回<E9A1BB><E59B9E>hought: 我必须回答这个问题。\n",
"Action: 问<><E997AE>hought: 我必须回答这个问题。\n",
"Action: 问她想知道<E79FA5><E98193>hought: 我必须回答这个问题。\n",
"Action: 问她想知道什么。\n",
"Action Input: 没有需要的输入。\n",
"Observation:\n",
"Observation: 问<><E997AE>hought: 我必须回答这个问题。\n",
"Action: 问她想知道<E79FA5><E98193>hought: 我必须回答这个问题。\n",
"Action: 问她想知道什么。 is not a valid tool, try another one.\n",
"Thought:\n",
"traceback.print_exc()\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/models/extensions/callback.py\", line 188, in gen\n",
" ret = self.mfunc(callback=_callback, **self.kwargs)\n",
" File \"/tmp/ipykernel_10879/1809555145.py\", line 114, in generate_with_callback\n",
" self.checkPoint.model.generate(**kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n",
" return func(*args, **kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 1437, in generate\n",
" return self.greedy_search(\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 2245, in greedy_search\n",
" model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py\", line 737, in prepare_inputs_for_generation\n",
" position_ids.masked_fill_(attention_mask == 0, 1)\n",
"SystemExit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"方法结束\n",
"invalid thread id\n",
"response:我不能回<E883BD><E59B9E>不能回答这个问题因为我是一个人工智能程序。\n",
"Final Answer: 我不能回<E883BD><E59B9E>不能回答这个问题因为我是一个人工智能程序。\n",
"Final Answer: 我不能回答这个问题,因为我是一个人工智能程序。\n"
]
},
{
"data": {
"text/plain": [
"'我不能回答这个问题,因为我是一个人工智能程序。'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"agent_chain.run(input=\"你好\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "71a4259f-f589-4aa6-b868-3e10b4f2b22c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"__call:Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\n",
"\n",
"Summary: useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Summary]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
" \n",
"Question: 你是谁?\n",
"\n",
"response:Thought: 我需要回<E8A681><E59B9E>hought: 我需要回答这个问题。\n",
"Action: <20><>hought: 我需要回答这个问题。\n",
"Action: 执行以下操作:\n",
"Action Input: 输入自<E585A5><E887AA>hought: 我需要回答这个问题。\n",
"Action: 执行以下操作:\n",
"Action Input: 输入自己的名字。\n",
"Observation:\n",
"__call:Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\n",
"\n",
"Summary: useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Summary]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
" \n",
"Question: 你是谁?\n",
"Thought: 我需要回<E8A681><E59B9E>hought: 我需要回答这个问题。\n",
"Action: <20><>hought: 我需要回答这个问题。\n",
"Action: 执行以下操作:\n",
"Action Input: 输入自<E585A5><E887AA>hought: 我需要回答这个问题。\n",
"Action: 执行以下操作:\n",
"Action Input: 输入自己的名字。\n",
"Observation:\n",
"Observation: <20><>hought: 我需要回答这个问题。\n",
"Action: 执行以下操作: is not a valid tool, try another one.\n",
"Thought:\n",
"traceback.print_exc()\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/models/extensions/callback.py\", line 188, in gen\n",
" ret = self.mfunc(callback=_callback, **self.kwargs)\n",
" File \"/tmp/ipykernel_13699/1809555145.py\", line 114, in generate_with_callback\n",
" self.checkPoint.model.generate(**kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n",
" return func(*args, **kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 1437, in generate\n",
" return self.greedy_search(\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 2245, in greedy_search\n",
" model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py\", line 737, in prepare_inputs_for_generation\n",
" position_ids.masked_fill_(attention_mask == 0, 1)\n",
"SystemExit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"方法结束\n",
"invalid thread id\n",
"response:我不知道该如何回<E4BD95><E59B9E>不知道该如何回答这个问题。\n",
"Final Answer: 我不知道该如何回<E4BD95><E59B9E>不知道该如何回答这个问题。\n",
"Final Answer: 我不知道该如何回答这个问题。\n"
]
},
{
"data": {
"text/plain": [
"'我不知道该如何回答这个问题。'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_chain.run(input=\"你是谁?\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e0cd4b1d-a7c8-432f-93d4-ef78b3dd851a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"__call:Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\n",
"\n",
"Summary: useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Summary]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
" \n",
"Question: 我们之前聊了什么?\n",
"\n",
"response:Thought: 我需要回<E8A681><E59B9E>hought: 我需要回顾我们之前的对话以确定问题的<E9A298><E79A84>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 检查我们之前的对话记录\n",
"Action Input: 无\n",
"Observation:\n",
"__call:Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\n",
"\n",
"Summary: useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Summary]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
" \n",
"Question: 我们之前聊了什么?\n",
"Thought: 我需要回<E8A681><E59B9E>hought: 我需要回顾我们之前的对话以确定问题的<E9A298><E79A84>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 检查我们之前的对话记录\n",
"Action Input: 无\n",
"Observation:\n",
"Observation: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 检查我们之前的对话记录 is not a valid tool, try another one.\n",
"Thought:\n",
"traceback.print_exc()\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/models/extensions/callback.py\", line 188, in gen\n",
" ret = self.mfunc(callback=_callback, **self.kwargs)\n",
" File \"/tmp/ipykernel_13699/1809555145.py\", line 114, in generate_with_callback\n",
" self.checkPoint.model.generate(**kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n",
" return func(*args, **kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 1437, in generate\n",
" return self.greedy_search(\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 2245, in greedy_search\n",
" model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py\", line 737, in prepare_inputs_for_generation\n",
" position_ids.masked_fill_(attention_mask == 0, 1)\n",
"SystemExit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"response:我需要回<E8A681><E59B9E>需要回顾我们之前的对话以确定问题的<E9A298><E79A84>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回<E8A681><E59B9E>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的<E9A298><E79A84>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 找出我们之前<E4B98B><E5898D>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 找出我们之前聊的主题\n",
"Action Input: 无\n",
"Observation:\n",
"__call:Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\n",
"\n",
"Summary: useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Summary]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
" \n",
"Question: 我们之前聊了什么?\n",
"Thought: 我需要回<E8A681><E59B9E>hought: 我需要回顾我们之前的对话以确定问题的<E9A298><E79A84>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 检查我们之前的对话记录\n",
"Action Input: 无\n",
"Observation:\n",
"Observation: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 检查我们之前的对话记录 is not a valid tool, try another one.\n",
"Thought:我需要回<E8A681><E59B9E>需要回顾我们之前的对话以确定问题的<E9A298><E79A84>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回<E8A681><E59B9E>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的<E9A298><E79A84>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 找出我们之前<E4B98B><E5898D>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 找出我们之前聊的主题\n",
"Action Input: 无\n",
"Observation:\n",
"Observation: <20><>hought: 我需要回<E8A681><E59B9E>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的<E9A298><E79A84>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 找出我们之前<E4B98B><E5898D>需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: <20><>hought: 我需要回顾我们之前的对话以确定问题的具体内容。\n",
"Action: 找出我们之前聊的主题 is not a valid tool, try another one.\n",
"Thought:\n",
"traceback.print_exc()\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/models/extensions/callback.py\", line 188, in gen\n",
" ret = self.mfunc(callback=_callback, **self.kwargs)\n",
" File \"/tmp/ipykernel_13699/1809555145.py\", line 114, in generate_with_callback\n",
" self.checkPoint.model.generate(**kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n",
" return func(*args, **kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 1437, in generate\n",
" return self.greedy_search(\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 2245, in greedy_search\n",
" model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py\", line 737, in prepare_inputs_for_generation\n",
" position_ids.masked_fill_(attention_mask == 0, 1)\n",
"SystemExit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"response:<3A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"traceback.print_exc()\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/models/extensions/callback.py\", line 188, in gen\n",
" ret = self.mfunc(callback=_callback, **self.kwargs)\n",
" File \"/tmp/ipykernel_13699/1809555145.py\", line 114, in generate_with_callback\n",
" self.checkPoint.model.generate(**kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n",
" return func(*args, **kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 1437, in generate\n",
" return self.greedy_search(\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/generation/utils.py\", line 2245, in greedy_search\n",
" model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)\n",
" File \"/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py\", line 739, in prepare_inputs_for_generation\n",
" position_ids = position_ids[:, -1].unsqueeze(-1)\n",
"SystemExit\n"
]
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800000; text-decoration-color: #800000\">╭─────────────────────────────── </span><span style=\"color: #800000; text-decoration-color: #800000; font-weight: bold\">Traceback </span><span style=\"color: #bf7f7f; text-decoration-color: #bf7f7f; font-weight: bold\">(most recent call last)</span><span style=\"color: #800000; text-decoration-color: #800000\"> ────────────────────────────────╮</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/tmp/ipykernel_13699/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">3633147670.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">&lt;module&gt;</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000; font-style: italic\">[Errno 2] No such file or directory: '/tmp/ipykernel_13699/3633147670.py'</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/chains/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">base.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">241</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">run</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">238 │ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">return</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>(args[<span style=\"color: #0000ff; text-decoration-color: #0000ff\">0</span>], callbacks=callbacks)[<span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.output_keys[<span style=\"color: #0000ff; text-decoration-color: #0000ff\">0</span>]] <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">239 │ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">240 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> kwargs <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">and</span> <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">not</span> args: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>241 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">return</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>(kwargs, callbacks=callbacks)[<span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.output_keys[<span style=\"color: #0000ff; text-decoration-color: #0000ff\">0</span>]] <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">242 │ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">243 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">raise</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">ValueError</span>( <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">244 │ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">f\"`run` supported with either positional arguments or keyword arguments\"</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/chains/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">base.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">142</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">__call__</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">139 │ │ │ </span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">140 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span> (<span style=\"color: #00ffff; text-decoration-color: #00ffff\">KeyboardInterrupt</span>, <span style=\"color: #00ffff; text-decoration-color: #00ffff\">Exception</span>) <span style=\"color: #0000ff; text-decoration-color: #0000ff\">as</span> e: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">141 │ │ │ </span>run_manager.on_chain_error(e) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>142 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">raise</span> e <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">143 │ │ </span>run_manager.on_chain_end(outputs) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">144 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">return</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.prep_outputs(inputs, outputs, return_only_outputs) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">145 </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/chains/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">base.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">136</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">__call__</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">133 │ │ </span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">134 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">try</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">135 │ │ │ </span>outputs = ( <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>136 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._call(inputs, run_manager=run_manager) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">137 │ │ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> new_arg_supported <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">138 │ │ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">else</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._call(inputs) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">139 │ │ │ </span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">agent.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">904</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">_call</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">901 │ │ </span>start_time = time.time() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">902 │ │ # We now enter the agent loop (until it returns something).</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">903 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">while</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._should_continue(iterations, time_elapsed): <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>904 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>next_step_output = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._take_next_step( <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">905 │ │ │ │ </span>name_to_tool_map, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">906 │ │ │ │ </span>color_mapping, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">907 │ │ │ │ </span>inputs, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">agent.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">748</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">_take_next_step</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">745 │ │ │ </span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">746 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">except</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">Exception</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">as</span> e: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">747 │ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">not</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.handle_parsing_errors: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>748 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">raise</span> e <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">749 │ │ │ </span>text = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">str</span>(e).split(<span style=\"color: #808000; text-decoration-color: #808000\">\"`\"</span>)[<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1</span>] <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">750 │ │ │ </span>observation = <span style=\"color: #808000; text-decoration-color: #808000\">\"Invalid or incomplete response\"</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">751 │ │ │ </span>output = AgentAction(<span style=\"color: #808000; text-decoration-color: #808000\">\"_Exception\"</span>, observation, text) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">agent.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">741</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">_take_next_step</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">738 </span><span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">│ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">\"\"\"</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">739 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">try</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">740 │ │ │ # Call the LLM to see what to do.</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>741 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>output = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.agent.plan( <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">742 │ │ │ │ </span>intermediate_steps, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">743 │ │ │ │ </span>callbacks=run_manager.get_child() <span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> run_manager <span style=\"color: #0000ff; text-decoration-color: #0000ff\">else</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span>, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">744 │ │ │ │ </span>**inputs, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">agent.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">426</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">plan</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">423 </span><span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">│ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">\"\"\"</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">424 │ │ </span>full_inputs = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.get_full_inputs(intermediate_steps, **kwargs) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">425 │ │ </span>full_output = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.llm_chain.predict(callbacks=callbacks, **full_inputs) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>426 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">return</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>.output_parser.parse(full_output) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">427 │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">428 │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">async</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">def</span> <span style=\"color: #00ff00; text-decoration-color: #00ff00\">aplan</span>( <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">429 │ │ </span><span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">mrkl/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">output_parser.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">26</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">parse</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">23 │ │ </span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">24 │ │ </span>match = re.search(regex, text, re.DOTALL) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">25 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">not</span> match: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>26 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">raise</span> OutputParserException(<span style=\"color: #808000; text-decoration-color: #808000\">f\"Could not parse LLM output: `{</span>text<span style=\"color: #808000; text-decoration-color: #808000\">}`\"</span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">27 │ │ </span>action = match.group(<span style=\"color: #0000ff; text-decoration-color: #0000ff\">1</span>).strip() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">28 │ │ </span>action_input = match.group(<span style=\"color: #0000ff; text-decoration-color: #0000ff\">2</span>) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">29 │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">return</span> AgentAction(action, action_input.strip(<span style=\"color: #808000; text-decoration-color: #808000\">\" \"</span>).strip(<span style=\"color: #808000; text-decoration-color: #808000\">'\"'</span>), text) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
"<span style=\"color: #800000; text-decoration-color: #800000\">╰──────────────────────────────────────────────────────────────────────────────────────────────────╯</span>\n",
"<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">OutputParserException: </span>Could not parse LLM output: \n",
"`<60><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>`\n",
"</pre>\n"
],
"text/plain": [
"\u001b[31m╭─\u001b[0m\u001b[31m──────────────────────────────\u001b[0m\u001b[31m \u001b[0m\u001b[1;31mTraceback \u001b[0m\u001b[1;2;31m(most recent call last)\u001b[0m\u001b[31m \u001b[0m\u001b[31m───────────────────────────────\u001b[0m\u001b[31m─╮\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/tmp/ipykernel_13699/\u001b[0m\u001b[1;33m3633147670.py\u001b[0m:\u001b[94m1\u001b[0m in \u001b[92m<module>\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[3;31m[Errno 2] No such file or directory: '/tmp/ipykernel_13699/3633147670.py'\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/chains/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[1;33mbase.py\u001b[0m:\u001b[94m241\u001b[0m in \u001b[92mrun\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m238 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[94mreturn\u001b[0m \u001b[96mself\u001b[0m(args[\u001b[94m0\u001b[0m], callbacks=callbacks)[\u001b[96mself\u001b[0m.output_keys[\u001b[94m0\u001b[0m]] \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m239 \u001b[0m\u001b[2m│ │ \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m240 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mif\u001b[0m kwargs \u001b[95mand\u001b[0m \u001b[95mnot\u001b[0m args: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m241 \u001b[2m│ │ │ \u001b[0m\u001b[94mreturn\u001b[0m \u001b[96mself\u001b[0m(kwargs, callbacks=callbacks)[\u001b[96mself\u001b[0m.output_keys[\u001b[94m0\u001b[0m]] \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m242 \u001b[0m\u001b[2m│ │ \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m243 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mraise\u001b[0m \u001b[96mValueError\u001b[0m( \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m244 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[33mf\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m`run` supported with either positional arguments or keyword arguments\u001b[0m\u001b[33m\"\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/chains/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[1;33mbase.py\u001b[0m:\u001b[94m142\u001b[0m in \u001b[92m__call__\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m139 \u001b[0m\u001b[2m│ │ │ \u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m140 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mexcept\u001b[0m (\u001b[96mKeyboardInterrupt\u001b[0m, \u001b[96mException\u001b[0m) \u001b[94mas\u001b[0m e: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m141 \u001b[0m\u001b[2m│ │ │ \u001b[0mrun_manager.on_chain_error(e) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m142 \u001b[2m│ │ │ \u001b[0m\u001b[94mraise\u001b[0m e \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m143 \u001b[0m\u001b[2m│ │ \u001b[0mrun_manager.on_chain_end(outputs) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m144 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mreturn\u001b[0m \u001b[96mself\u001b[0m.prep_outputs(inputs, outputs, return_only_outputs) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m145 \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/chains/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[1;33mbase.py\u001b[0m:\u001b[94m136\u001b[0m in \u001b[92m__call__\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m133 \u001b[0m\u001b[2m│ │ \u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m134 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mtry\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m135 \u001b[0m\u001b[2m│ │ │ \u001b[0moutputs = ( \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m136 \u001b[2m│ │ │ │ \u001b[0m\u001b[96mself\u001b[0m._call(inputs, run_manager=run_manager) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m137 \u001b[0m\u001b[2m│ │ │ │ \u001b[0m\u001b[94mif\u001b[0m new_arg_supported \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m138 \u001b[0m\u001b[2m│ │ │ │ \u001b[0m\u001b[94melse\u001b[0m \u001b[96mself\u001b[0m._call(inputs) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m139 \u001b[0m\u001b[2m│ │ │ \u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[1;33magent.py\u001b[0m:\u001b[94m904\u001b[0m in \u001b[92m_call\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m901 \u001b[0m\u001b[2m│ │ \u001b[0mstart_time = time.time() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m902 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[2m# We now enter the agent loop (until it returns something).\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m903 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mwhile\u001b[0m \u001b[96mself\u001b[0m._should_continue(iterations, time_elapsed): \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m904 \u001b[2m│ │ │ \u001b[0mnext_step_output = \u001b[96mself\u001b[0m._take_next_step( \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m905 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mname_to_tool_map, \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m906 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mcolor_mapping, \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m907 \u001b[0m\u001b[2m│ │ │ │ \u001b[0minputs, \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[1;33magent.py\u001b[0m:\u001b[94m748\u001b[0m in \u001b[92m_take_next_step\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m745 \u001b[0m\u001b[2m│ │ │ \u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m746 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mexcept\u001b[0m \u001b[96mException\u001b[0m \u001b[94mas\u001b[0m e: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m747 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[94mif\u001b[0m \u001b[95mnot\u001b[0m \u001b[96mself\u001b[0m.handle_parsing_errors: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m748 \u001b[2m│ │ │ │ \u001b[0m\u001b[94mraise\u001b[0m e \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m749 \u001b[0m\u001b[2m│ │ │ \u001b[0mtext = \u001b[96mstr\u001b[0m(e).split(\u001b[33m\"\u001b[0m\u001b[33m`\u001b[0m\u001b[33m\"\u001b[0m)[\u001b[94m1\u001b[0m] \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m750 \u001b[0m\u001b[2m│ │ │ \u001b[0mobservation = \u001b[33m\"\u001b[0m\u001b[33mInvalid or incomplete response\u001b[0m\u001b[33m\"\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m751 \u001b[0m\u001b[2m│ │ │ \u001b[0moutput = AgentAction(\u001b[33m\"\u001b[0m\u001b[33m_Exception\u001b[0m\u001b[33m\"\u001b[0m, observation, text) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[1;33magent.py\u001b[0m:\u001b[94m741\u001b[0m in \u001b[92m_take_next_step\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m738 \u001b[0m\u001b[2;33m│ │ \u001b[0m\u001b[33m\"\"\"\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m739 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mtry\u001b[0m: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m740 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[2m# Call the LLM to see what to do.\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m741 \u001b[2m│ │ │ \u001b[0moutput = \u001b[96mself\u001b[0m.agent.plan( \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m742 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mintermediate_steps, \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m743 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mcallbacks=run_manager.get_child() \u001b[94mif\u001b[0m run_manager \u001b[94melse\u001b[0m \u001b[94mNone\u001b[0m, \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m744 \u001b[0m\u001b[2m│ │ │ │ \u001b[0m**inputs, \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[1;33magent.py\u001b[0m:\u001b[94m426\u001b[0m in \u001b[92mplan\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m423 \u001b[0m\u001b[2;33m│ │ \u001b[0m\u001b[33m\"\"\"\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m424 \u001b[0m\u001b[2m│ │ \u001b[0mfull_inputs = \u001b[96mself\u001b[0m.get_full_inputs(intermediate_steps, **kwargs) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m425 \u001b[0m\u001b[2m│ │ \u001b[0mfull_output = \u001b[96mself\u001b[0m.llm_chain.predict(callbacks=callbacks, **full_inputs) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m426 \u001b[2m│ │ \u001b[0m\u001b[94mreturn\u001b[0m \u001b[96mself\u001b[0m.output_parser.parse(full_output) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m427 \u001b[0m\u001b[2m│ \u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m428 \u001b[0m\u001b[2m│ \u001b[0m\u001b[94masync\u001b[0m \u001b[94mdef\u001b[0m \u001b[92maplan\u001b[0m( \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m429 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[96mself\u001b[0m, \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33m/media/gpt4-pdf-chatbot-langchain/pyenv-langchain/lib/python3.10/site-packages/langchain/agents/\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2;33mmrkl/\u001b[0m\u001b[1;33moutput_parser.py\u001b[0m:\u001b[94m26\u001b[0m in \u001b[92mparse\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m23 \u001b[0m\u001b[2m│ │ \u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m24 \u001b[0m\u001b[2m│ │ \u001b[0mmatch = re.search(regex, text, re.DOTALL) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m25 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mif\u001b[0m \u001b[95mnot\u001b[0m match: \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m26 \u001b[2m│ │ │ \u001b[0m\u001b[94mraise\u001b[0m OutputParserException(\u001b[33mf\u001b[0m\u001b[33m\"\u001b[0m\u001b[33mCould not parse LLM output: `\u001b[0m\u001b[33m{\u001b[0mtext\u001b[33m}\u001b[0m\u001b[33m`\u001b[0m\u001b[33m\"\u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m27 \u001b[0m\u001b[2m│ │ \u001b[0maction = match.group(\u001b[94m1\u001b[0m).strip() \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m28 \u001b[0m\u001b[2m│ │ \u001b[0maction_input = match.group(\u001b[94m2\u001b[0m) \u001b[31m│\u001b[0m\n",
"\u001b[31m│\u001b[0m \u001b[2m29 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mreturn\u001b[0m AgentAction(action, action_input.strip(\u001b[33m\"\u001b[0m\u001b[33m \u001b[0m\u001b[33m\"\u001b[0m).strip(\u001b[33m'\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m'\u001b[0m), text) \u001b[31m│\u001b[0m\n",
"\u001b[31m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
"\u001b[1;91mOutputParserException: \u001b[0mCould not parse LLM output: \n",
"`<60><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n",
"<22><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>`\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"agent_chain.run(input=\"我们之前聊了什么?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "096f0378-b7eb-46b6-9985-95c3f3521ecd",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3c964f3-fb14-40bd-8df9-ae3c452260bb",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "e31b13c0-af47-4614-93d0-090a69579cc1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}