2023-04-11 12:30:36 +08:00
|
|
|
|
import gradio as gr
|
|
|
|
|
|
import os
|
|
|
|
|
|
import shutil
|
2023-04-14 00:42:21 +08:00
|
|
|
|
from chains.local_doc_qa import LocalDocQA
|
|
|
|
|
|
from configs.model_config import *
|
2023-04-16 23:38:25 +08:00
|
|
|
|
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
nltk.data.path = [os.path.join(os.path.dirname(__file__), "nltk_data")] + nltk.data.path
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
2023-04-15 20:01:36 +08:00
|
|
|
|
# return top-k text chunk from vector store
|
|
|
|
|
|
VECTOR_SEARCH_TOP_K = 6
|
|
|
|
|
|
|
|
|
|
|
|
# LLM input history length
|
|
|
|
|
|
LLM_HISTORY_LEN = 3
|
2023-04-16 08:59:06 +08:00
|
|
|
|
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
2023-04-18 22:31:55 +08:00
|
|
|
|
def get_vs_list():
|
2023-04-19 21:54:59 +08:00
|
|
|
|
if not os.path.exists(VS_ROOT_PATH):
|
2023-04-18 22:31:55 +08:00
|
|
|
|
return []
|
2023-04-22 16:53:04 +08:00
|
|
|
|
return os.listdir(VS_ROOT_PATH)
|
2023-04-18 22:31:55 +08:00
|
|
|
|
|
|
|
|
|
|
|
2023-04-22 16:53:04 +08:00
|
|
|
|
vs_list = ["新建知识库"] + get_vs_list()
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
2023-04-14 00:42:21 +08:00
|
|
|
|
embedding_model_dict_list = list(embedding_model_dict.keys())
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
2023-04-14 00:42:21 +08:00
|
|
|
|
llm_model_dict_list = list(llm_model_dict.keys())
|
|
|
|
|
|
|
|
|
|
|
|
local_doc_qa = LocalDocQA()
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
|
|
|
|
|
|
2023-04-19 21:54:59 +08:00
|
|
|
|
def get_answer(query, vs_path, history, mode):
|
2023-04-25 20:36:16 +08:00
|
|
|
|
if mode == "知识库问答":
|
|
|
|
|
|
if vs_path:
|
|
|
|
|
|
for resp, history in local_doc_qa.get_knowledge_based_answer(
|
2023-04-26 23:19:11 +08:00
|
|
|
|
query=query, vs_path=vs_path, chat_history=history):
|
|
|
|
|
|
source = "\n\n"
|
|
|
|
|
|
source += "".join(
|
|
|
|
|
|
[f"""<details> <summary>出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}</summary>\n"""
|
|
|
|
|
|
f"""{doc.page_content}\n"""
|
|
|
|
|
|
f"""</details>"""
|
|
|
|
|
|
for i, doc in
|
|
|
|
|
|
enumerate(resp["source_documents"])])
|
|
|
|
|
|
history[-1][-1] += source
|
2023-04-25 20:36:16 +08:00
|
|
|
|
yield history, ""
|
|
|
|
|
|
else:
|
2023-04-26 23:19:11 +08:00
|
|
|
|
for resp, history in local_doc_qa.llm._call(query, history):
|
2023-04-25 20:36:16 +08:00
|
|
|
|
history[-1][-1] = resp + (
|
|
|
|
|
|
"\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "")
|
|
|
|
|
|
yield history, ""
|
2023-04-14 23:30:37 +08:00
|
|
|
|
else:
|
2023-04-26 23:19:11 +08:00
|
|
|
|
for resp, history in local_doc_qa.llm._call(query, history):
|
2023-04-25 20:36:16 +08:00
|
|
|
|
history[-1][-1] = resp
|
|
|
|
|
|
yield history, ""
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
|
|
|
|
|
|
2023-04-14 22:55:51 +08:00
|
|
|
|
def update_status(history, status):
|
|
|
|
|
|
history = history + [[None, status]]
|
|
|
|
|
|
print(status)
|
|
|
|
|
|
return history
|
2023-04-11 19:52:59 +08:00
|
|
|
|
|
|
|
|
|
|
|
2023-04-14 00:42:21 +08:00
|
|
|
|
def init_model():
|
|
|
|
|
|
try:
|
|
|
|
|
|
local_doc_qa.init_cfg()
|
2023-04-18 22:31:55 +08:00
|
|
|
|
local_doc_qa.llm._call("你好")
|
2023-04-23 21:49:42 +08:00
|
|
|
|
reply = """模型已成功加载,可以开始对话,或从右侧选择模式后开始对话"""
|
|
|
|
|
|
print(reply)
|
|
|
|
|
|
return reply
|
2023-04-16 08:59:06 +08:00
|
|
|
|
except Exception as e:
|
|
|
|
|
|
print(e)
|
2023-04-23 21:49:42 +08:00
|
|
|
|
reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
|
|
|
|
|
|
if str(e) == "Unknown platform: darwin":
|
2023-04-25 20:36:16 +08:00
|
|
|
|
print("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
|
2023-04-23 21:49:42 +08:00
|
|
|
|
" https://github.com/imClumsyPanda/langchain-ChatGLM")
|
|
|
|
|
|
else:
|
|
|
|
|
|
print(reply)
|
|
|
|
|
|
return reply
|
2023-04-14 00:42:21 +08:00
|
|
|
|
|
|
|
|
|
|
|
2023-04-15 14:43:12 +08:00
|
|
|
|
def reinit_model(llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, history):
|
2023-04-14 22:55:51 +08:00
|
|
|
|
try:
|
|
|
|
|
|
local_doc_qa.init_cfg(llm_model=llm_model,
|
|
|
|
|
|
embedding_model=embedding_model,
|
|
|
|
|
|
llm_history_len=llm_history_len,
|
2023-04-15 14:43:12 +08:00
|
|
|
|
use_ptuning_v2=use_ptuning_v2,
|
2023-04-14 22:55:51 +08:00
|
|
|
|
top_k=top_k)
|
2023-04-19 22:28:49 +08:00
|
|
|
|
model_status = """模型已成功重新加载,可以开始对话,或从右侧选择模式后开始对话"""
|
2023-04-23 21:49:42 +08:00
|
|
|
|
print(model_status)
|
2023-04-16 08:59:06 +08:00
|
|
|
|
except Exception as e:
|
|
|
|
|
|
print(e)
|
2023-04-19 22:28:49 +08:00
|
|
|
|
model_status = """模型未成功重新加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
|
2023-04-23 21:49:42 +08:00
|
|
|
|
print(model_status)
|
2023-04-14 23:30:37 +08:00
|
|
|
|
return history + [[None, model_status]]
|
2023-04-14 22:55:51 +08:00
|
|
|
|
|
2023-04-14 00:42:21 +08:00
|
|
|
|
|
2023-04-19 21:54:59 +08:00
|
|
|
|
def get_vector_store(vs_id, files, history):
|
|
|
|
|
|
vs_path = VS_ROOT_PATH + vs_id
|
|
|
|
|
|
filelist = []
|
|
|
|
|
|
for file in files:
|
|
|
|
|
|
filename = os.path.split(file.name)[-1]
|
|
|
|
|
|
shutil.move(file.name, UPLOAD_ROOT_PATH + filename)
|
|
|
|
|
|
filelist.append(UPLOAD_ROOT_PATH + filename)
|
2023-04-16 08:59:06 +08:00
|
|
|
|
if local_doc_qa.llm and local_doc_qa.embeddings:
|
2023-04-19 21:54:59 +08:00
|
|
|
|
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(filelist, vs_path)
|
|
|
|
|
|
if len(loaded_files):
|
|
|
|
|
|
file_status = f"已上传 {'、'.join([os.path.split(i)[-1] for i in loaded_files])} 至知识库,并已加载知识库,请开始提问"
|
2023-04-14 23:30:37 +08:00
|
|
|
|
else:
|
|
|
|
|
|
file_status = "文件未成功加载,请重新上传文件"
|
2023-04-14 22:55:51 +08:00
|
|
|
|
else:
|
2023-04-14 23:30:37 +08:00
|
|
|
|
file_status = "模型未完成加载,请先在加载模型后再导入文件"
|
|
|
|
|
|
vs_path = None
|
2023-04-23 21:49:42 +08:00
|
|
|
|
print(file_status)
|
2023-04-19 21:54:59 +08:00
|
|
|
|
return vs_path, None, history + [[None, file_status]]
|
2023-04-14 01:06:13 +08:00
|
|
|
|
|
|
|
|
|
|
|
2023-04-19 22:28:49 +08:00
|
|
|
|
def change_vs_name_input(vs_id):
|
|
|
|
|
|
if vs_id == "新建知识库":
|
|
|
|
|
|
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), None
|
2023-04-19 07:58:58 +08:00
|
|
|
|
else:
|
2023-04-19 22:28:49 +08:00
|
|
|
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), VS_ROOT_PATH + vs_id
|
2023-04-19 07:58:58 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def change_mode(mode):
|
|
|
|
|
|
if mode == "知识库问答":
|
|
|
|
|
|
return gr.update(visible=True)
|
2023-04-18 23:43:57 +08:00
|
|
|
|
else:
|
|
|
|
|
|
return gr.update(visible=False)
|
|
|
|
|
|
|
2023-04-19 21:54:59 +08:00
|
|
|
|
|
2023-04-19 07:58:58 +08:00
|
|
|
|
def add_vs_name(vs_name, vs_list, chatbot):
|
|
|
|
|
|
if vs_name in vs_list:
|
2023-04-23 21:49:42 +08:00
|
|
|
|
vs_status = "与已有知识库名称冲突,请重新选择其他名称后提交"
|
|
|
|
|
|
chatbot = chatbot + [[None, vs_status]]
|
2023-04-19 21:54:59 +08:00
|
|
|
|
return gr.update(visible=True), vs_list, chatbot
|
2023-04-19 07:58:58 +08:00
|
|
|
|
else:
|
2023-04-23 21:49:42 +08:00
|
|
|
|
vs_status = f"""已新增知识库"{vs_name}",将在上传文件并载入成功后进行存储。请在开始对话前,先完成文件上传。 """
|
|
|
|
|
|
chatbot = chatbot + [[None, vs_status]]
|
2023-04-19 21:54:59 +08:00
|
|
|
|
return gr.update(visible=True, choices=vs_list + [vs_name], value=vs_name), vs_list + [vs_name], chatbot
|
2023-04-19 07:58:58 +08:00
|
|
|
|
|
2023-04-18 23:43:57 +08:00
|
|
|
|
|
2023-04-14 22:55:51 +08:00
|
|
|
|
block_css = """.importantButton {
|
2023-04-11 12:30:36 +08:00
|
|
|
|
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
|
|
|
|
|
|
border: none !important;
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
.importantButton:hover {
|
|
|
|
|
|
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
|
|
|
|
|
|
border: none !important;
|
2023-04-14 22:55:51 +08:00
|
|
|
|
}"""
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
2023-04-14 22:55:51 +08:00
|
|
|
|
webui_title = """
|
2023-04-11 12:30:36 +08:00
|
|
|
|
# 🎉langchain-ChatGLM WebUI🎉
|
|
|
|
|
|
|
|
|
|
|
|
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
|
|
|
|
|
|
|
2023-04-14 22:55:51 +08:00
|
|
|
|
"""
|
|
|
|
|
|
|
2023-04-19 22:28:49 +08:00
|
|
|
|
init_message = """欢迎使用 langchain-ChatGLM Web UI!
|
|
|
|
|
|
|
|
|
|
|
|
请在右侧切换模式,目前支持直接与 LLM 模型对话或基于本地知识库问答。
|
|
|
|
|
|
|
|
|
|
|
|
知识库问答模式中,选择知识库名称后,即可开始问答,如有需要可以在选择知识库名称后上传文件/文件夹至知识库。
|
|
|
|
|
|
|
|
|
|
|
|
知识库暂不支持文件删除,该功能将在后续版本中推出。
|
|
|
|
|
|
"""
|
2023-04-14 22:55:51 +08:00
|
|
|
|
|
|
|
|
|
|
model_status = init_model()
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(css=block_css) as demo:
|
2023-04-19 21:54:59 +08:00
|
|
|
|
vs_path, file_status, model_status, vs_list = gr.State(""), gr.State(""), gr.State(model_status), gr.State(vs_list)
|
2023-04-14 22:55:51 +08:00
|
|
|
|
gr.Markdown(webui_title)
|
2023-04-19 07:58:58 +08:00
|
|
|
|
with gr.Tab("对话"):
|
2023-04-18 22:31:55 +08:00
|
|
|
|
with gr.Row():
|
2023-04-19 07:58:58 +08:00
|
|
|
|
with gr.Column(scale=10):
|
2023-04-18 22:31:55 +08:00
|
|
|
|
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
|
|
|
|
|
|
elem_id="chat-box",
|
|
|
|
|
|
show_label=False).style(height=750)
|
|
|
|
|
|
query = gr.Textbox(show_label=False,
|
|
|
|
|
|
placeholder="请输入提问内容,按回车进行提交",
|
|
|
|
|
|
).style(container=False)
|
2023-04-19 07:58:58 +08:00
|
|
|
|
with gr.Column(scale=5):
|
|
|
|
|
|
mode = gr.Radio(["LLM 对话", "知识库问答"],
|
|
|
|
|
|
label="请选择使用模式",
|
2023-04-19 21:54:59 +08:00
|
|
|
|
value="知识库问答", )
|
2023-04-19 07:58:58 +08:00
|
|
|
|
vs_setting = gr.Accordion("配置知识库")
|
|
|
|
|
|
mode.change(fn=change_mode,
|
|
|
|
|
|
inputs=mode,
|
|
|
|
|
|
outputs=vs_setting)
|
|
|
|
|
|
with vs_setting:
|
2023-04-19 21:54:59 +08:00
|
|
|
|
select_vs = gr.Dropdown(vs_list.value,
|
2023-04-18 23:43:57 +08:00
|
|
|
|
label="请选择要加载的知识库",
|
|
|
|
|
|
interactive=True,
|
2023-04-19 21:54:59 +08:00
|
|
|
|
value=vs_list.value[0] if len(vs_list.value) > 0 else None
|
|
|
|
|
|
)
|
2023-04-18 23:43:57 +08:00
|
|
|
|
vs_name = gr.Textbox(label="请输入新建知识库名称",
|
|
|
|
|
|
lines=1,
|
|
|
|
|
|
interactive=True)
|
2023-04-19 07:58:58 +08:00
|
|
|
|
vs_add = gr.Button(value="添加至知识库选项")
|
|
|
|
|
|
vs_add.click(fn=add_vs_name,
|
|
|
|
|
|
inputs=[vs_name, vs_list, chatbot],
|
|
|
|
|
|
outputs=[select_vs, vs_list, chatbot])
|
2023-04-19 21:54:59 +08:00
|
|
|
|
|
2023-04-19 22:28:49 +08:00
|
|
|
|
file2vs = gr.Column(visible=False)
|
2023-04-19 21:54:59 +08:00
|
|
|
|
with file2vs:
|
2023-04-19 22:28:49 +08:00
|
|
|
|
# load_vs = gr.Button("加载知识库")
|
2023-04-19 21:54:59 +08:00
|
|
|
|
gr.Markdown("向知识库中添加文件")
|
|
|
|
|
|
with gr.Tab("上传文件"):
|
|
|
|
|
|
files = gr.File(label="添加文件",
|
|
|
|
|
|
file_types=['.txt', '.md', '.docx', '.pdf'],
|
|
|
|
|
|
file_count="multiple",
|
|
|
|
|
|
show_label=False
|
|
|
|
|
|
)
|
2023-04-19 22:28:49 +08:00
|
|
|
|
load_file_button = gr.Button("上传文件并加载知识库")
|
2023-04-19 21:54:59 +08:00
|
|
|
|
with gr.Tab("上传文件夹"):
|
|
|
|
|
|
folder_files = gr.File(label="添加文件",
|
|
|
|
|
|
# file_types=['.txt', '.md', '.docx', '.pdf'],
|
|
|
|
|
|
file_count="directory",
|
|
|
|
|
|
show_label=False
|
|
|
|
|
|
)
|
2023-04-19 22:28:49 +08:00
|
|
|
|
load_folder_button = gr.Button("上传文件夹并加载知识库")
|
|
|
|
|
|
# load_vs.click(fn=)
|
2023-04-18 23:43:57 +08:00
|
|
|
|
select_vs.change(fn=change_vs_name_input,
|
|
|
|
|
|
inputs=select_vs,
|
2023-04-19 22:28:49 +08:00
|
|
|
|
outputs=[vs_name, vs_add, file2vs, vs_path])
|
2023-04-19 21:54:59 +08:00
|
|
|
|
# 将上传的文件保存到content文件夹下,并更新下拉框
|
|
|
|
|
|
load_file_button.click(get_vector_store,
|
|
|
|
|
|
show_progress=True,
|
|
|
|
|
|
inputs=[select_vs, files, chatbot],
|
|
|
|
|
|
outputs=[vs_path, files, chatbot],
|
|
|
|
|
|
)
|
|
|
|
|
|
load_folder_button.click(get_vector_store,
|
|
|
|
|
|
show_progress=True,
|
|
|
|
|
|
inputs=[select_vs, folder_files, chatbot],
|
|
|
|
|
|
outputs=[vs_path, folder_files, chatbot],
|
|
|
|
|
|
)
|
|
|
|
|
|
query.submit(get_answer,
|
|
|
|
|
|
[query, vs_path, chatbot, mode],
|
|
|
|
|
|
[chatbot, query],
|
|
|
|
|
|
)
|
2023-04-18 22:31:55 +08:00
|
|
|
|
with gr.Tab("模型配置"):
|
|
|
|
|
|
llm_model = gr.Radio(llm_model_dict_list,
|
|
|
|
|
|
label="LLM 模型",
|
|
|
|
|
|
value=LLM_MODEL,
|
|
|
|
|
|
interactive=True)
|
|
|
|
|
|
llm_history_len = gr.Slider(0,
|
|
|
|
|
|
10,
|
|
|
|
|
|
value=LLM_HISTORY_LEN,
|
|
|
|
|
|
step=1,
|
2023-04-19 21:54:59 +08:00
|
|
|
|
label="LLM 对话轮数",
|
2023-04-18 22:31:55 +08:00
|
|
|
|
interactive=True)
|
|
|
|
|
|
use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2,
|
|
|
|
|
|
label="使用p-tuning-v2微调过的模型",
|
|
|
|
|
|
interactive=True)
|
|
|
|
|
|
embedding_model = gr.Radio(embedding_model_dict_list,
|
|
|
|
|
|
label="Embedding 模型",
|
|
|
|
|
|
value=EMBEDDING_MODEL,
|
|
|
|
|
|
interactive=True)
|
|
|
|
|
|
top_k = gr.Slider(1,
|
|
|
|
|
|
20,
|
|
|
|
|
|
value=VECTOR_SEARCH_TOP_K,
|
|
|
|
|
|
step=1,
|
|
|
|
|
|
label="向量匹配 top k",
|
|
|
|
|
|
interactive=True)
|
|
|
|
|
|
load_model_button = gr.Button("重新加载模型")
|
2023-04-14 00:42:21 +08:00
|
|
|
|
load_model_button.click(reinit_model,
|
|
|
|
|
|
show_progress=True,
|
2023-04-15 14:43:12 +08:00
|
|
|
|
inputs=[llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, chatbot],
|
2023-04-14 23:30:37 +08:00
|
|
|
|
outputs=chatbot
|
|
|
|
|
|
)
|
2023-04-11 12:30:36 +08:00
|
|
|
|
|
2023-04-26 23:19:11 +08:00
|
|
|
|
(demo
|
|
|
|
|
|
.queue(concurrency_count=3)
|
|
|
|
|
|
.launch(server_name='0.0.0.0',
|
|
|
|
|
|
server_port=7860,
|
|
|
|
|
|
show_api=False,
|
|
|
|
|
|
share=False,
|
|
|
|
|
|
inbrowser=False))
|