Langchain-Chatchat/configs/model_config.py

63 lines
2.0 KiB
Python
Raw Normal View History

2023-04-13 23:01:52 +08:00
import torch.cuda
import torch.backends
2023-04-25 20:14:33 +08:00
import os
2023-04-13 23:01:52 +08:00
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
2023-04-27 07:40:57 +08:00
"text2vec-base": "shibing624/text2vec-base-chinese",
2023-04-13 23:01:52 +08:00
"text2vec": "GanymedeNil/text2vec-large-chinese",
}
# Embedding model name
2023-04-13 23:20:45 +08:00
EMBEDDING_MODEL = "text2vec"
2023-04-13 23:01:52 +08:00
# Embedding running device
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# supported LLM models
llm_model_dict = {
2023-04-27 07:40:57 +08:00
"chatyuan": "ClueAI/ChatYuan-large-v2",
2023-04-13 23:01:52 +08:00
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
"chatglm-6b-int8": "THUDM/chatglm-6b-int8",
2023-04-13 23:01:52 +08:00
"chatglm-6b": "THUDM/chatglm-6b",
}
# LLM model name
2023-04-21 21:22:25 +08:00
LLM_MODEL = "chatglm-6b"
2023-04-13 23:01:52 +08:00
# LLM lora path默认为空如果有请直接指定文件夹路径
LLM_LORA_PATH = ""
USE_LORA = True if LLM_LORA_PATH else False
# LLM streaming reponse
STREAMING = True
2023-04-15 14:43:12 +08:00
# Use p-tuning-v2 PrefixEncoder
USE_PTUNING_V2 = False
2023-04-13 23:01:52 +08:00
# LLM running device
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
2023-05-03 22:31:28 +08:00
VS_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "vector_store")
2023-04-19 23:02:47 +08:00
2023-05-03 22:31:28 +08:00
UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "content")
2023-04-19 23:02:47 +08:00
2023-04-26 23:20:08 +08:00
# 基于上下文的prompt模版请务必保留"{question}"和"{context}"
2023-05-02 00:28:09 +08:00
PROMPT_TEMPLATE = """已知信息:
{context}
2023-05-02 00:28:09 +08:00
根据上述已知信息简洁和专业的来回答用户的问题如果无法从中得到答案请说 根据已知信息无法回答该问题 没有提供足够的相关信息不允许在答案中添加编造成分答案请使用中文 问题是{question}"""
2023-04-28 00:02:42 +08:00
# 匹配后单段上下文长度
2023-05-04 20:48:36 +08:00
CHUNK_SIZE = 250
# LLM input history length
LLM_HISTORY_LEN = 3
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 5
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")