Langchain-Chatchat/server/chat/knowledge_base_chat.py

77 lines
3.5 KiB
Python
Raw Normal View History

2023-07-27 23:22:07 +08:00
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
VECTOR_SEARCH_TOP_K)
2023-07-27 23:22:07 +08:00
from server.chat.utils import wrap_done
from server.utils import BaseResponse
2023-07-27 23:22:07 +08:00
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
2023-08-08 23:54:51 +08:00
from langchain.prompts.chat import ChatPromptTemplate
from typing import List, Optional
from server.chat.utils import History
from server.knowledge_base.kb_service.base import KBService, KBServiceFactory
import json
2023-07-27 23:22:07 +08:00
def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant",
"content": "虎头虎脑"}]]
),
2023-07-27 23:22:07 +08:00
):
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
history = [History(**h) if isinstance(h, dict) else h for h in history]
2023-07-27 23:22:07 +08:00
async def knowledge_base_chat_iterator(query: str,
kb: KBService,
top_k: int,
2023-08-08 23:54:51 +08:00
history: Optional[List[History]],
2023-07-27 23:22:07 +08:00
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL
)
2023-08-06 18:32:10 +08:00
docs = kb.search_docs(query, top_k)
2023-07-27 23:22:07 +08:00
context = "\n".join([doc.page_content for doc in docs])
2023-08-08 23:54:51 +08:00
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)])
chain = LLMChain(prompt=chat_prompt, llm=model)
2023-07-27 23:22:07 +08:00
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
source_documents = [
f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n"""
for inum, doc in enumerate(docs)
]
2023-07-27 23:22:07 +08:00
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps({"answer": token,
"docs": source_documents})
2023-07-27 23:22:07 +08:00
await task
2023-08-08 23:54:51 +08:00
return StreamingResponse(knowledge_base_chat_iterator(query, kb, top_k, history),
media_type="text/event-stream")