2023-07-27 23:22:07 +08:00
|
|
|
import os
|
|
|
|
|
import urllib
|
|
|
|
|
import shutil
|
|
|
|
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
|
|
|
from langchain.vectorstores import FAISS
|
|
|
|
|
from fastapi import File, Form, UploadFile
|
|
|
|
|
from server.utils import BaseResponse, ListResponse, torch_gc
|
|
|
|
|
from server.knowledge_base.utils import (validate_kb_name, get_kb_path, get_doc_path,
|
|
|
|
|
get_vs_path, get_file_path, file2text)
|
|
|
|
|
from configs.model_config import embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE
|
2023-08-04 10:16:30 +08:00
|
|
|
from server.knowledge_base.utils import load_embeddings, refresh_vs_cache
|
2023-07-27 23:22:07 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
async def list_docs(knowledge_base_name: str):
|
|
|
|
|
if not validate_kb_name(knowledge_base_name):
|
|
|
|
|
return ListResponse(code=403, msg="Don't attack me", data=[])
|
|
|
|
|
|
|
|
|
|
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
|
|
|
|
|
kb_path = get_kb_path(knowledge_base_name)
|
|
|
|
|
local_doc_folder = get_doc_path(knowledge_base_name)
|
|
|
|
|
if not os.path.exists(kb_path):
|
|
|
|
|
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
|
|
|
|
|
if not os.path.exists(local_doc_folder):
|
|
|
|
|
all_doc_names = []
|
|
|
|
|
else:
|
|
|
|
|
all_doc_names = [
|
|
|
|
|
doc
|
|
|
|
|
for doc in os.listdir(local_doc_folder)
|
|
|
|
|
if os.path.isfile(os.path.join(local_doc_folder, doc))
|
|
|
|
|
]
|
|
|
|
|
return ListResponse(data=all_doc_names)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def upload_doc(file: UploadFile = File(description="上传文件"),
|
|
|
|
|
knowledge_base_name: str = Form(..., description="知识库名称", example="kb1"),
|
|
|
|
|
):
|
|
|
|
|
if not validate_kb_name(knowledge_base_name):
|
|
|
|
|
return BaseResponse(code=403, msg="Don't attack me")
|
|
|
|
|
|
|
|
|
|
saved_path = get_doc_path(knowledge_base_name)
|
|
|
|
|
if not os.path.exists(saved_path):
|
|
|
|
|
return BaseResponse(code=404, msg="未找到知识库 {knowledge_base_name}")
|
|
|
|
|
|
|
|
|
|
file_content = await file.read() # 读取上传文件的内容
|
|
|
|
|
|
|
|
|
|
file_path = os.path.join(saved_path, file.filename)
|
|
|
|
|
if os.path.exists(file_path) and os.path.getsize(file_path) == len(file_content):
|
|
|
|
|
file_status = f"文件 {file.filename} 已存在。"
|
|
|
|
|
return BaseResponse(code=404, msg=file_status)
|
|
|
|
|
|
|
|
|
|
with open(file_path, "wb") as f:
|
|
|
|
|
f.write(file_content)
|
|
|
|
|
|
|
|
|
|
vs_path = get_vs_path(knowledge_base_name)
|
|
|
|
|
# TODO: 重写知识库生成/添加逻辑
|
|
|
|
|
filepath = get_file_path(knowledge_base_name, file.filename)
|
|
|
|
|
docs = file2text(filepath)
|
|
|
|
|
loaded_files = [file]
|
2023-08-04 10:16:30 +08:00
|
|
|
embeddings = load_embeddings(embedding_model_dict[EMBEDDING_MODEL], EMBEDDING_DEVICE)
|
2023-07-27 23:22:07 +08:00
|
|
|
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
|
|
|
|
|
vector_store = FAISS.load_local(vs_path, embeddings)
|
|
|
|
|
vector_store.add_documents(docs)
|
|
|
|
|
torch_gc()
|
|
|
|
|
else:
|
|
|
|
|
if not os.path.exists(vs_path):
|
|
|
|
|
os.makedirs(vs_path)
|
|
|
|
|
vector_store = FAISS.from_documents(docs, embeddings) # docs 为Document列表
|
|
|
|
|
torch_gc()
|
|
|
|
|
vector_store.save_local(vs_path)
|
|
|
|
|
if len(loaded_files) > 0:
|
|
|
|
|
file_status = f"成功上传文件 {file.filename}"
|
2023-08-04 10:16:30 +08:00
|
|
|
refresh_vs_cache(knowledge_base_name)
|
2023-07-27 23:22:07 +08:00
|
|
|
return BaseResponse(code=200, msg=file_status)
|
|
|
|
|
else:
|
|
|
|
|
file_status = f"上传文件 {file.filename} 失败"
|
|
|
|
|
return BaseResponse(code=500, msg=file_status)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def delete_doc(knowledge_base_name: str,
|
|
|
|
|
doc_name: str,
|
|
|
|
|
):
|
|
|
|
|
if not validate_kb_name(knowledge_base_name):
|
|
|
|
|
return BaseResponse(code=403, msg="Don't attack me")
|
|
|
|
|
|
|
|
|
|
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
|
|
|
|
|
if not os.path.exists(get_kb_path(knowledge_base_name)):
|
|
|
|
|
return BaseResponse(code=404, msg=f"Knowledge base {knowledge_base_name} not found")
|
|
|
|
|
doc_path = get_file_path(knowledge_base_name, doc_name)
|
|
|
|
|
if os.path.exists(doc_path):
|
|
|
|
|
os.remove(doc_path)
|
|
|
|
|
remain_docs = await list_docs(knowledge_base_name)
|
|
|
|
|
if len(remain_docs.data) == 0:
|
|
|
|
|
shutil.rmtree(get_kb_path(knowledge_base_name), ignore_errors=True)
|
|
|
|
|
return BaseResponse(code=200, msg=f"document {doc_name} delete success")
|
|
|
|
|
else:
|
|
|
|
|
# TODO: 重写从向量库中删除文件
|
|
|
|
|
status = "" # local_doc_qa.delete_file_from_vector_store(doc_path, get_vs_path(knowledge_base_name))
|
|
|
|
|
if "success" in status:
|
2023-08-04 10:16:30 +08:00
|
|
|
refresh_vs_cache(knowledge_base_name)
|
2023-07-27 23:22:07 +08:00
|
|
|
return BaseResponse(code=200, msg=f"document {doc_name} delete success")
|
|
|
|
|
else:
|
|
|
|
|
return BaseResponse(code=500, msg=f"document {doc_name} delete fail")
|
|
|
|
|
else:
|
|
|
|
|
return BaseResponse(code=404, msg=f"document {doc_name} not found")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def update_doc():
|
|
|
|
|
# TODO: 替换文件
|
2023-08-04 10:16:30 +08:00
|
|
|
# refresh_vs_cache(knowledge_base_name)
|
2023-07-27 23:22:07 +08:00
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
async def download_doc():
|
|
|
|
|
# TODO: 下载文件
|
|
|
|
|
pass
|