Langchain-Chatchat/server/knowledge_base/kb_doc_api.py

115 lines
4.7 KiB
Python
Raw Normal View History

2023-07-27 23:22:07 +08:00
import os
import urllib
import shutil
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from fastapi import File, Form, UploadFile
from server.utils import BaseResponse, ListResponse, torch_gc
from server.knowledge_base.utils import (validate_kb_name, get_kb_path, get_doc_path,
get_vs_path, get_file_path, file2text)
from configs.model_config import embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE
from server.knowledge_base.utils import load_embeddings, refresh_vs_cache
2023-07-27 23:22:07 +08:00
async def list_docs(knowledge_base_name: str):
if not validate_kb_name(knowledge_base_name):
return ListResponse(code=403, msg="Don't attack me", data=[])
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
kb_path = get_kb_path(knowledge_base_name)
local_doc_folder = get_doc_path(knowledge_base_name)
if not os.path.exists(kb_path):
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
if not os.path.exists(local_doc_folder):
all_doc_names = []
else:
all_doc_names = [
doc
for doc in os.listdir(local_doc_folder)
if os.path.isfile(os.path.join(local_doc_folder, doc))
]
return ListResponse(data=all_doc_names)
async def upload_doc(file: UploadFile = File(description="上传文件"),
knowledge_base_name: str = Form(..., description="知识库名称", example="kb1"),
):
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
saved_path = get_doc_path(knowledge_base_name)
if not os.path.exists(saved_path):
return BaseResponse(code=404, msg="未找到知识库 {knowledge_base_name}")
file_content = await file.read() # 读取上传文件的内容
file_path = os.path.join(saved_path, file.filename)
if os.path.exists(file_path) and os.path.getsize(file_path) == len(file_content):
file_status = f"文件 {file.filename} 已存在。"
return BaseResponse(code=404, msg=file_status)
with open(file_path, "wb") as f:
f.write(file_content)
vs_path = get_vs_path(knowledge_base_name)
# TODO: 重写知识库生成/添加逻辑
filepath = get_file_path(knowledge_base_name, file.filename)
docs = file2text(filepath)
loaded_files = [file]
embeddings = load_embeddings(embedding_model_dict[EMBEDDING_MODEL], EMBEDDING_DEVICE)
2023-07-27 23:22:07 +08:00
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
vector_store = FAISS.load_local(vs_path, embeddings)
vector_store.add_documents(docs)
torch_gc()
else:
if not os.path.exists(vs_path):
os.makedirs(vs_path)
vector_store = FAISS.from_documents(docs, embeddings) # docs 为Document列表
torch_gc()
vector_store.save_local(vs_path)
if len(loaded_files) > 0:
file_status = f"成功上传文件 {file.filename}"
refresh_vs_cache(knowledge_base_name)
2023-07-27 23:22:07 +08:00
return BaseResponse(code=200, msg=file_status)
else:
file_status = f"上传文件 {file.filename} 失败"
return BaseResponse(code=500, msg=file_status)
async def delete_doc(knowledge_base_name: str,
doc_name: str,
):
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
if not os.path.exists(get_kb_path(knowledge_base_name)):
return BaseResponse(code=404, msg=f"Knowledge base {knowledge_base_name} not found")
doc_path = get_file_path(knowledge_base_name, doc_name)
if os.path.exists(doc_path):
os.remove(doc_path)
remain_docs = await list_docs(knowledge_base_name)
if len(remain_docs.data) == 0:
shutil.rmtree(get_kb_path(knowledge_base_name), ignore_errors=True)
return BaseResponse(code=200, msg=f"document {doc_name} delete success")
else:
# TODO: 重写从向量库中删除文件
status = "" # local_doc_qa.delete_file_from_vector_store(doc_path, get_vs_path(knowledge_base_name))
if "success" in status:
refresh_vs_cache(knowledge_base_name)
2023-07-27 23:22:07 +08:00
return BaseResponse(code=200, msg=f"document {doc_name} delete success")
else:
return BaseResponse(code=500, msg=f"document {doc_name} delete fail")
else:
return BaseResponse(code=404, msg=f"document {doc_name} not found")
async def update_doc():
# TODO: 替换文件
# refresh_vs_cache(knowledge_base_name)
2023-07-27 23:22:07 +08:00
pass
async def download_doc():
# TODO: 下载文件
pass