Langchain-Chatchat/server/knowledge_base/utils.py

111 lines
4.6 KiB
Python
Raw Normal View History

from typing import Union
import os
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from configs.model_config import (embedding_model_dict, KB_ROOT_PATH, EMBEDDING_MODEL, kbs_config)
from functools import lru_cache
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
from server.db.repository.knowledge_base_repository import load_kb_from_db
from server.knowledge_base.kb_service.default_kb_service import DefaultKBService
2023-07-27 23:22:07 +08:00
def validate_kb_name(knowledge_base_id: str) -> bool:
# 检查是否包含预期外的字符或路径攻击关键字
if "../" in knowledge_base_id:
return False
return True
def get_kb_path(knowledge_base_name: str):
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
def get_doc_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "content")
def get_vs_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "vector_store")
def get_file_path(knowledge_base_name: str, doc_name: str):
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
def list_docs_from_folder(kb_name: str):
doc_path = get_doc_path(kb_name)
return [file for file in os.listdir(doc_path)
if os.path.isfile(os.path.join(doc_path, file))]
@lru_cache(1)
def load_embeddings(model: str, device: str):
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
model_kwargs={'device': device})
return embeddings
LOADER_DICT = {"UnstructuredFileLoader": ['.eml', '.html', '.json', '.md', '.msg', '.rst',
'.rtf', '.txt', '.xml',
'.doc', '.docx', '.epub', '.odt', '.pdf',
'.ppt', '.pptx', '.tsv'], # '.pdf', '.xlsx', '.csv'
"CSVLoader": [".csv"],
}
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]
def get_LoaderClass(file_extension):
for LoaderClass, extensions in LOADER_DICT.items():
if file_extension in extensions:
return LoaderClass
class KnowledgeFile:
def __init__(
self,
filename: str,
knowledge_base_name: str
):
self.kb_name = knowledge_base_name
self.filename = filename
self.ext = os.path.splitext(filename)[-1]
if self.ext not in SUPPORTED_EXTS:
raise ValueError(f"暂未支持的文件格式 {self.ext}")
self.filepath = get_file_path(knowledge_base_name, filename)
self.docs = None
self.document_loader_name = get_LoaderClass(self.ext)
# TODO: 增加依据文件格式匹配text_splitter
self.text_splitter_name = "CharacterTextSplitter"
def file2text(self):
DocumentLoader = getattr(sys.modules['langchain.document_loaders'], self.document_loader_name)
loader = DocumentLoader(self.filepath)
# TODO: 增加依据文件格式匹配text_splitter
TextSplitter = getattr(sys.modules['langchain.text_splitter'], self.text_splitter_name)
text_splitter = TextSplitter(chunk_size=500, chunk_overlap=200)
return loader.load_and_split(text_splitter)
class KBServiceFactory:
@staticmethod
def get_service(kb_name: str,
vector_store_type: Union[str, SupportedVSType],
embed_model: str = EMBEDDING_MODEL,
) -> KBService:
if isinstance(vector_store_type, str):
vector_store_type = getattr(SupportedVSType, vector_store_type.upper())
if SupportedVSType.FAISS == vector_store_type:
from server.knowledge_base.kb_service.faiss_kb_service import FaissKBService
return FaissKBService(kb_name, embed_model=embed_model)
elif SupportedVSType.MILVUS == vector_store_type:
from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
return MilvusKBService(kb_name, embed_model=embed_model) # other milvus parameters are set in model_config.kbs_config
elif SupportedVSType.DEFAULT == vector_store_type: # kb_exists of default kbservice is False, to make validation easier.
return DefaultKBService(kb_name)
@staticmethod
def get_service_by_name(kb_name: str
) -> KBService:
kb_name, vs_type, embed_model = load_kb_from_db(kb_name)
return KBServiceFactory.get_service(kb_name, vs_type, embed_model)
@staticmethod
def get_default():
return KBServiceFactory.get_service("default", SupportedVSType.DEFAULT)