2023-08-03 18:22:36 +08:00
|
|
|
|
from langchain.utilities import BingSearchAPIWrapper, DuckDuckGoSearchAPIWrapper
|
2023-08-01 16:39:17 +08:00
|
|
|
|
from configs.model_config import BING_SEARCH_URL, BING_SUBSCRIPTION_KEY
|
|
|
|
|
|
from fastapi import Body
|
|
|
|
|
|
from fastapi.responses import StreamingResponse
|
2023-09-08 12:25:02 +08:00
|
|
|
|
from fastapi.concurrency import run_in_threadpool
|
2023-09-13 10:00:54 +08:00
|
|
|
|
from configs.model_config import (llm_model_dict, LLM_MODEL, SEARCH_ENGINE_TOP_K,
|
|
|
|
|
|
PROMPT_TEMPLATE, TEMPERATURE)
|
2023-08-01 16:39:17 +08:00
|
|
|
|
from server.chat.utils import wrap_done
|
2023-08-03 18:22:36 +08:00
|
|
|
|
from server.utils import BaseResponse
|
2023-08-01 16:39:17 +08:00
|
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
|
from langchain import LLMChain
|
|
|
|
|
|
from langchain.callbacks import AsyncIteratorCallbackHandler
|
|
|
|
|
|
from typing import AsyncIterable
|
|
|
|
|
|
import asyncio
|
2023-08-08 23:54:51 +08:00
|
|
|
|
from langchain.prompts.chat import ChatPromptTemplate
|
|
|
|
|
|
from typing import List, Optional
|
|
|
|
|
|
from server.chat.utils import History
|
2023-08-01 16:39:17 +08:00
|
|
|
|
from langchain.docstore.document import Document
|
2023-08-04 12:12:13 +08:00
|
|
|
|
import json
|
2023-08-01 16:39:17 +08:00
|
|
|
|
|
2023-08-03 18:22:36 +08:00
|
|
|
|
|
2023-08-03 17:06:43 +08:00
|
|
|
|
def bing_search(text, result_len=SEARCH_ENGINE_TOP_K):
|
2023-08-01 16:39:17 +08:00
|
|
|
|
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
|
|
|
|
|
|
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
|
|
|
|
|
|
"title": "env info is not found",
|
|
|
|
|
|
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
|
|
|
|
|
|
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
|
|
|
|
|
|
bing_search_url=BING_SEARCH_URL)
|
|
|
|
|
|
return search.results(text, result_len)
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-08-03 18:22:36 +08:00
|
|
|
|
def duckduckgo_search(text, result_len=SEARCH_ENGINE_TOP_K):
|
|
|
|
|
|
search = DuckDuckGoSearchAPIWrapper()
|
|
|
|
|
|
return search.results(text, result_len)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SEARCH_ENGINES = {"bing": bing_search,
|
|
|
|
|
|
"duckduckgo": duckduckgo_search,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-08-01 16:39:17 +08:00
|
|
|
|
def search_result2docs(search_results):
|
|
|
|
|
|
docs = []
|
|
|
|
|
|
for result in search_results:
|
|
|
|
|
|
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
|
|
|
|
|
|
metadata={"source": result["link"] if "link" in result.keys() else "",
|
|
|
|
|
|
"filename": result["title"] if "title" in result.keys() else ""})
|
|
|
|
|
|
docs.append(doc)
|
|
|
|
|
|
return docs
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-09-08 12:25:02 +08:00
|
|
|
|
async def lookup_search_engine(
|
2023-08-03 18:22:36 +08:00
|
|
|
|
query: str,
|
|
|
|
|
|
search_engine_name: str,
|
|
|
|
|
|
top_k: int = SEARCH_ENGINE_TOP_K,
|
|
|
|
|
|
):
|
2023-09-08 12:25:02 +08:00
|
|
|
|
search_engine = SEARCH_ENGINES[search_engine_name]
|
|
|
|
|
|
results = await run_in_threadpool(search_engine, query, result_len=top_k)
|
2023-08-03 18:22:36 +08:00
|
|
|
|
docs = search_result2docs(results)
|
|
|
|
|
|
return docs
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-09-08 12:25:02 +08:00
|
|
|
|
async def search_engine_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
|
|
|
|
|
|
search_engine_name: str = Body(..., description="搜索引擎名称", examples=["duckduckgo"]),
|
|
|
|
|
|
top_k: int = Body(SEARCH_ENGINE_TOP_K, description="检索结果数量"),
|
|
|
|
|
|
history: List[History] = Body([],
|
|
|
|
|
|
description="历史对话",
|
|
|
|
|
|
examples=[[
|
|
|
|
|
|
{"role": "user",
|
|
|
|
|
|
"content": "我们来玩成语接龙,我先来,生龙活虎"},
|
|
|
|
|
|
{"role": "assistant",
|
|
|
|
|
|
"content": "虎头虎脑"}]]
|
|
|
|
|
|
),
|
|
|
|
|
|
stream: bool = Body(False, description="流式输出"),
|
|
|
|
|
|
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
|
2023-09-13 10:00:54 +08:00
|
|
|
|
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", gt=0.0, le=1.0),
|
2023-08-03 18:22:36 +08:00
|
|
|
|
):
|
|
|
|
|
|
if search_engine_name not in SEARCH_ENGINES.keys():
|
|
|
|
|
|
return BaseResponse(code=404, msg=f"未支持搜索引擎 {search_engine_name}")
|
|
|
|
|
|
|
2023-08-25 10:58:40 +08:00
|
|
|
|
if search_engine_name == "bing" and not BING_SUBSCRIPTION_KEY:
|
|
|
|
|
|
return BaseResponse(code=404, msg=f"要使用Bing搜索引擎,需要设置 `BING_SUBSCRIPTION_KEY`")
|
|
|
|
|
|
|
2023-08-23 08:35:26 +08:00
|
|
|
|
history = [History.from_data(h) for h in history]
|
|
|
|
|
|
|
2023-08-03 18:22:36 +08:00
|
|
|
|
async def search_engine_chat_iterator(query: str,
|
|
|
|
|
|
search_engine_name: str,
|
|
|
|
|
|
top_k: int,
|
2023-08-08 23:54:51 +08:00
|
|
|
|
history: Optional[List[History]],
|
2023-09-01 23:58:09 +08:00
|
|
|
|
model_name: str = LLM_MODEL,
|
2023-08-03 18:22:36 +08:00
|
|
|
|
) -> AsyncIterable[str]:
|
2023-08-01 16:39:17 +08:00
|
|
|
|
callback = AsyncIteratorCallbackHandler()
|
|
|
|
|
|
model = ChatOpenAI(
|
|
|
|
|
|
streaming=True,
|
|
|
|
|
|
verbose=True,
|
|
|
|
|
|
callbacks=[callback],
|
2023-09-01 23:58:09 +08:00
|
|
|
|
openai_api_key=llm_model_dict[model_name]["api_key"],
|
|
|
|
|
|
openai_api_base=llm_model_dict[model_name]["api_base_url"],
|
|
|
|
|
|
model_name=model_name,
|
2023-09-13 10:00:54 +08:00
|
|
|
|
temperature=temperature,
|
2023-09-01 23:58:09 +08:00
|
|
|
|
openai_proxy=llm_model_dict[model_name].get("openai_proxy")
|
2023-08-01 16:39:17 +08:00
|
|
|
|
)
|
|
|
|
|
|
|
2023-09-08 12:25:02 +08:00
|
|
|
|
docs = await lookup_search_engine(query, search_engine_name, top_k)
|
2023-08-01 16:39:17 +08:00
|
|
|
|
context = "\n".join([doc.page_content for doc in docs])
|
|
|
|
|
|
|
2023-08-23 08:35:26 +08:00
|
|
|
|
input_msg = History(role="user", content=PROMPT_TEMPLATE).to_msg_template(False)
|
2023-08-08 23:54:51 +08:00
|
|
|
|
chat_prompt = ChatPromptTemplate.from_messages(
|
2023-08-23 08:35:26 +08:00
|
|
|
|
[i.to_msg_template() for i in history] + [input_msg])
|
2023-08-08 23:54:51 +08:00
|
|
|
|
|
|
|
|
|
|
chain = LLMChain(prompt=chat_prompt, llm=model)
|
2023-08-01 16:39:17 +08:00
|
|
|
|
|
|
|
|
|
|
# Begin a task that runs in the background.
|
|
|
|
|
|
task = asyncio.create_task(wrap_done(
|
|
|
|
|
|
chain.acall({"context": context, "question": query}),
|
|
|
|
|
|
callback.done),
|
|
|
|
|
|
)
|
|
|
|
|
|
|
2023-08-03 18:22:36 +08:00
|
|
|
|
source_documents = [
|
|
|
|
|
|
f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n"""
|
|
|
|
|
|
for inum, doc in enumerate(docs)
|
|
|
|
|
|
]
|
|
|
|
|
|
|
2023-08-09 23:35:36 +08:00
|
|
|
|
if stream:
|
|
|
|
|
|
async for token in callback.aiter():
|
|
|
|
|
|
# Use server-sent-events to stream the response
|
2023-09-12 08:31:17 +08:00
|
|
|
|
yield json.dumps({"answer": token}, ensure_ascii=False)
|
|
|
|
|
|
yield json.dumps({"docs": source_documents}, ensure_ascii=False)
|
2023-08-09 23:35:36 +08:00
|
|
|
|
else:
|
|
|
|
|
|
answer = ""
|
|
|
|
|
|
async for token in callback.aiter():
|
|
|
|
|
|
answer += token
|
2023-08-24 17:25:54 +08:00
|
|
|
|
yield json.dumps({"answer": answer,
|
2023-08-09 22:57:36 +08:00
|
|
|
|
"docs": source_documents},
|
|
|
|
|
|
ensure_ascii=False)
|
2023-08-01 16:39:17 +08:00
|
|
|
|
await task
|
|
|
|
|
|
|
2023-09-01 23:58:09 +08:00
|
|
|
|
return StreamingResponse(search_engine_chat_iterator(query, search_engine_name, top_k, history, model_name),
|
2023-08-03 18:22:36 +08:00
|
|
|
|
media_type="text/event-stream")
|