2023-09-17 11:19:16 +08:00
|
|
|
|
template = """
|
|
|
|
|
|
尽可能地回答以下问题。你可以使用以下工具:{tools}
|
2023-09-27 19:19:25 +08:00
|
|
|
|
请按照以下格式进行:
|
|
|
|
|
|
|
|
|
|
|
|
Question: 需要你回答的输入问题。
|
|
|
|
|
|
Thought: 你应该总是思考该做什么,并告诉我你要用什么工具。
|
|
|
|
|
|
Action: 需要使用的工具,应该是[{tool_names}]中的一个
|
|
|
|
|
|
Action Input: 传入工具的内容
|
2023-09-17 11:19:16 +08:00
|
|
|
|
Observation: 行动的结果
|
|
|
|
|
|
... (这个Thought/Action/Action Input/Observation可以重复N次)
|
2023-09-27 19:19:25 +08:00
|
|
|
|
Thought: 通过使用工具,我是否知道了答案,如果知道,就自然的回答问题,如果不知道,继续使用工具或者自己的知识 \n
|
|
|
|
|
|
Final Answer: 这个问题的答案是,输出完整的句子。
|
|
|
|
|
|
现在开始!
|
2023-09-17 11:19:16 +08:00
|
|
|
|
|
2023-09-27 19:19:25 +08:00
|
|
|
|
之前的对话:
|
2023-09-17 11:19:16 +08:00
|
|
|
|
{history}
|
2023-09-27 19:19:25 +08:00
|
|
|
|
New question:
|
|
|
|
|
|
{input}
|
|
|
|
|
|
Thought:
|
|
|
|
|
|
{agent_scratchpad}"""
|
2023-09-17 11:19:16 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ChatGPT 提示词模板
|
|
|
|
|
|
# template = """Answer the following questions as best you can, You have access to the following tools:
|
|
|
|
|
|
# {tools}
|
|
|
|
|
|
# Use the following format:
|
|
|
|
|
|
#
|
|
|
|
|
|
# Question: the input question you must answer
|
|
|
|
|
|
# Thought: you should always think about what to do
|
|
|
|
|
|
# Action: the action to take, should be one of [{tool_names}]
|
|
|
|
|
|
# Action Input: the input to the action
|
|
|
|
|
|
# Observation: the result of the action
|
|
|
|
|
|
# ... (this Thought/Action/Action Input/Observation can repeat N times)
|
|
|
|
|
|
# Thought: I now know the final answer
|
|
|
|
|
|
# Final Answer: the final answer to the original input question
|
|
|
|
|
|
#
|
|
|
|
|
|
# Begin!
|
|
|
|
|
|
#
|
|
|
|
|
|
# Previous conversation history:
|
|
|
|
|
|
# {history}
|
|
|
|
|
|
#
|
|
|
|
|
|
# New question: {input}
|
|
|
|
|
|
# {agent_scratchpad}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
|
|
|
|
|
|
from langchain.prompts import StringPromptTemplate
|
|
|
|
|
|
from langchain import OpenAI, SerpAPIWrapper, LLMChain
|
|
|
|
|
|
from typing import List, Union
|
|
|
|
|
|
from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
|
|
|
|
|
from server.agent.tools import tools
|
|
|
|
|
|
import re
|
|
|
|
|
|
class CustomPromptTemplate(StringPromptTemplate):
|
|
|
|
|
|
# The template to use
|
|
|
|
|
|
template: str
|
|
|
|
|
|
# The list of tools available
|
|
|
|
|
|
tools: List[Tool]
|
|
|
|
|
|
|
|
|
|
|
|
def format(self, **kwargs) -> str:
|
|
|
|
|
|
# Get the intermediate steps (AgentAction, Observation tuples)
|
|
|
|
|
|
# Format them in a particular way
|
|
|
|
|
|
intermediate_steps = kwargs.pop("intermediate_steps")
|
|
|
|
|
|
thoughts = ""
|
|
|
|
|
|
for action, observation in intermediate_steps:
|
|
|
|
|
|
thoughts += action.log
|
|
|
|
|
|
thoughts += f"\nObservation: {observation}\nThought: "
|
|
|
|
|
|
# Set the agent_scratchpad variable to that value
|
|
|
|
|
|
kwargs["agent_scratchpad"] = thoughts
|
|
|
|
|
|
# Create a tools variable from the list of tools provided
|
|
|
|
|
|
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
|
|
|
|
|
|
# Create a list of tool names for the tools provided
|
|
|
|
|
|
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
|
|
|
|
|
|
return self.template.format(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
prompt = CustomPromptTemplate(
|
|
|
|
|
|
template=template,
|
|
|
|
|
|
tools=tools,
|
|
|
|
|
|
input_variables=["input", "intermediate_steps", "history"]
|
|
|
|
|
|
)
|
|
|
|
|
|
class CustomOutputParser(AgentOutputParser):
|
|
|
|
|
|
|
|
|
|
|
|
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
|
|
|
|
|
|
# Check if agent should finish
|
|
|
|
|
|
if "Final Answer:" in llm_output:
|
|
|
|
|
|
return AgentFinish(
|
|
|
|
|
|
# Return values is generally always a dictionary with a single `output` key
|
|
|
|
|
|
# It is not recommended to try anything else at the moment :)
|
2023-09-27 19:19:25 +08:00
|
|
|
|
return_values={"output": llm_output.replace("Final Answer:", "").strip()},
|
2023-09-17 11:19:16 +08:00
|
|
|
|
log=llm_output,
|
|
|
|
|
|
)
|
|
|
|
|
|
# Parse out the action and action input
|
|
|
|
|
|
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
|
|
|
|
|
|
match = re.search(regex, llm_output, re.DOTALL)
|
|
|
|
|
|
if not match:
|
|
|
|
|
|
return AgentFinish(
|
|
|
|
|
|
return_values={"output": f"调用agent失败: `{llm_output}`"},
|
|
|
|
|
|
log=llm_output,
|
|
|
|
|
|
)
|
|
|
|
|
|
action = match.group(1).strip()
|
|
|
|
|
|
action_input = match.group(2)
|
|
|
|
|
|
# Return the action and action input
|
2023-09-27 19:19:25 +08:00
|
|
|
|
return AgentAction(
|
|
|
|
|
|
tool=action,
|
|
|
|
|
|
tool_input=action_input.strip(" ").strip('"'),
|
|
|
|
|
|
log=llm_output
|
|
|
|
|
|
)
|
2023-09-17 11:19:16 +08:00
|
|
|
|
|
|
|
|
|
|
|