Langchain-Chatchat/models/loader/loader.py

406 lines
18 KiB
Python
Raw Normal View History

import gc
import json
import os
import re
import time
from pathlib import Path
from peft import PeftModel
from typing import Optional, List, Dict, Tuple, Union
import torch
import transformers
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoTokenizer, BitsAndBytesConfig, LlamaTokenizer)
from transformers.dynamic_module_utils import get_class_from_dynamic_module
from transformers.modeling_utils import no_init_weights
from transformers.utils import ContextManagers
from accelerate import init_empty_weights
from accelerate.utils import get_balanced_memory, infer_auto_device_map
class LoaderCheckPoint:
"""
加载自定义 model CheckPoint
"""
# remote in the model on loader checkpoint
no_remote_model: bool = False
# 模型名称
model_name: str = None
tokenizer: object = None
# 模型全路径
model_path: str = None
model: object = None
model_config: object = None
lora_names: set = []
model_dir: str = None
lora_dir: str = None
ptuning_dir: str = None
use_ptuning_v2: bool = False
cpu: bool = False
gpu_memory: object = None
cpu_memory: object = None
auto_devices: object = True
# 如果开启了8bit量化加载,项目无法启动参考此位置选择合适的cuda版本https://github.com/TimDettmers/bitsandbytes/issues/156
load_in_8bit: bool = False
is_llamacpp: bool = False
bf16: bool = False
params: object = None
# 自定义设备网络
device_map: Optional[Dict[str, int]] = None
# 默认 cuda 如果不支持cuda使用多卡 如果不支持多卡 使用cpu
llm_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
def __init__(self, params: dict = None):
"""
模型初始化
:param params:
"""
self.model_path = None
self.params = params or {}
self.no_remote_model = params.get('no_remote_model', False)
self.model_name = params.get('model', '')
self.lora = params.get('lora', '')
self.use_ptuning_v2 = params.get('use_ptuning_v2', False)
self.model = None
self.tokenizer = None
self.model_dir = params.get('model_dir', '')
self.lora_dir = params.get('lora_dir', '')
2023-05-18 23:19:23 +08:00
self.ptuning_dir = params.get('ptuning_dir', 'ptuning-v2')
self.cpu = params.get('cpu', False)
self.gpu_memory = params.get('gpu_memory', None)
self.cpu_memory = params.get('cpu_memory', None)
self.auto_devices = params.get('auto_devices', True)
self.load_in_8bit = params.get('load_in_8bit', False)
self.bf16 = params.get('bf16', False)
def _load_model_config(self, model_name):
checkpoint = Path(f'{self.model_dir}/{model_name}')
if self.model_path:
checkpoint = Path(f'{self.model_path}')
else:
if not self.no_remote_model:
checkpoint = model_name
model_config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=True)
return model_config
def _load_model(self, model_name):
"""
加载自定义位置的model
:param model_name:
:return:
"""
print(f"Loading {model_name}...")
t0 = time.time()
checkpoint = Path(f'{self.model_dir}/{model_name}')
self.is_llamacpp = len(list(checkpoint.glob('ggml*.bin'))) > 0
if self.model_path:
checkpoint = Path(f'{self.model_path}')
else:
if not self.no_remote_model:
checkpoint = model_name
if 'chatglm' in model_name.lower():
LoaderClass = AutoModel
else:
LoaderClass = AutoModelForCausalLM
# Load the model in simple 16-bit mode by default
if not any([self.cpu, self.load_in_8bit, self.auto_devices, self.gpu_memory is not None,
self.cpu_memory is not None, self.is_llamacpp]):
if torch.cuda.is_available() and self.llm_device.lower().startswith("cuda"):
# 根据当前设备GPU数量决定是否进行多卡部署
num_gpus = torch.cuda.device_count()
if num_gpus < 2 and self.device_map is None:
model = (
LoaderClass.from_pretrained(checkpoint,
low_cpu_mem_usage=True,
config=self.model_config,
torch_dtype=torch.bfloat16 if self.bf16 else torch.float16,
trust_remote_code=True)
.half()
.cuda()
)
else:
from accelerate import dispatch_model
model = LoaderClass.from_pretrained(checkpoint,
low_cpu_mem_usage=True,
config=self.model_config,
torch_dtype=torch.bfloat16 if self.bf16 else torch.float16,
trust_remote_code=True).half()
# 可传入device_map自定义每张卡的部署情况
if self.device_map is None:
if 'chatglm' in model_name.lower():
device_map = self.chatglm_auto_configure_device_map(num_gpus)
elif 'moss' in model_name.lower():
device_map = self.moss_auto_configure_device_map(num_gpus,model_name)
else:
device_map = self.chatglm_auto_configure_device_map(num_gpus)
model = dispatch_model(model, device_map=device_map)
else:
print(
"Warning: torch.cuda.is_available() returned False.\nThis means that no GPU has been detected.\nFalling back to CPU mode.\n")
model = (
AutoModel.from_pretrained(
checkpoint,
config=self.model_config,
trust_remote_code=True)
.float()
.to(self.llm_device)
)
elif self.is_llamacpp:
from models.extensions.llamacpp_model_alternative import LlamaCppModel
model_file = list(checkpoint.glob('ggml*.bin'))[0]
print(f"llama.cpp weights detected: {model_file}\n")
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
return model, tokenizer
# Custom
else:
params = {"low_cpu_mem_usage": True}
if not any((self.cpu, torch.cuda.is_available(), torch.has_mps)):
print(
"Warning: torch.cuda.is_available() returned False.\nThis means that no GPU has been detected.\nFalling back to CPU mode.\n")
self.cpu = True
if self.cpu:
params["torch_dtype"] = torch.float32
else:
params["device_map"] = 'auto'
params["trust_remote_code"] = True
if self.load_in_8bit and any((self.auto_devices, self.gpu_memory)):
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True)
elif self.load_in_8bit:
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
elif self.bf16:
params["torch_dtype"] = torch.bfloat16
else:
params["torch_dtype"] = torch.float16
if self.gpu_memory:
memory_map = list(map(lambda x: x.strip(), self.gpu_memory))
max_cpu_memory = self.cpu_memory.strip() if self.cpu_memory is not None else '99GiB'
max_memory = {}
for i in range(len(memory_map)):
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else \
memory_map[i]
max_memory['cpu'] = max_cpu_memory
params['max_memory'] = max_memory
elif self.auto_devices:
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
suggestion = round((total_mem - 1000) / 1000) * 1000
if total_mem - suggestion < 800:
suggestion -= 1000
suggestion = int(round(suggestion / 1000))
print(
f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
max_memory = {0: f'{suggestion}GiB', 'cpu': f'{self.cpu_memory or 99}GiB'}
params['max_memory'] = max_memory
if self.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
config = AutoConfig.from_pretrained(checkpoint)
with init_empty_weights():
model = LoaderClass.from_config(config)
model.tie_weights()
if self.device_map is not None:
params['device_map'] = self.device_map
else:
params['device_map'] = infer_auto_device_map(
model,
dtype=torch.int8,
max_memory=params['max_memory'],
no_split_module_classes=model._no_split_modules
)
model = LoaderClass.from_pretrained(checkpoint, **params)
# Loading the tokenizer
if type(model) is transformers.LlamaForCausalLM:
tokenizer = LlamaTokenizer.from_pretrained(checkpoint, clean_up_tokenization_spaces=True)
# Leaving this here until the LLaMA tokenizer gets figured out.
# For some people this fixes things, for others it causes an error.
try:
tokenizer.eos_token_id = 2
tokenizer.bos_token_id = 1
tokenizer.pad_token_id = 0
except:
pass
else:
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
print(f"Loaded the model in {(time.time() - t0):.2f} seconds.")
return model, tokenizer
def chatglm_auto_configure_device_map(self, num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: PEFT加载lora模型出现的层命名不同
if self.lora:
layer_prefix = 'base_model.model.transformer'
else:
layer_prefix = 'transformer'
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {f'{layer_prefix}.word_embeddings': 0,
f'{layer_prefix}.final_layernorm': 0, 'lm_head': 0,
f'base_model.model.lm_head': 0, }
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'{layer_prefix}.layers.{i}'] = gpu_target
used += 1
return device_map
def moss_auto_configure_device_map(self, num_gpus: int, model_name) -> Dict[str, int]:
checkpoint = Path(f'{self.model_dir}/{model_name}')
if self.model_path:
checkpoint = Path(f'{self.model_path}')
else:
if not self.no_remote_model:
checkpoint = model_name
cls = get_class_from_dynamic_module(class_reference="fnlp/moss-moon-003-sft--modeling_moss.MossForCausalLM",
pretrained_model_name_or_path=checkpoint)
with ContextManagers([no_init_weights(_enable=True), init_empty_weights()]):
model = cls(self.model_config)
max_memory = get_balanced_memory(model, dtype=torch.int8 if self.load_in_8bit else None,
low_zero=False, no_split_module_classes=model._no_split_modules)
device_map = infer_auto_device_map(
model, dtype=torch.float16 if not self.load_in_8bit else torch.int8, max_memory=max_memory,
no_split_module_classes=model._no_split_modules)
device_map["transformer.wte"] = 0
device_map["transformer.drop"] = 0
device_map["transformer.ln_f"] = 0
device_map["lm_head"] = 0
return device_map
def _add_lora_to_model(self, lora_names):
# 目前加载的lora
prior_set = set(self.lora_names)
# 需要加载的
added_set = set(lora_names) - prior_set
# 删除的lora
removed_set = prior_set - set(lora_names)
self.lora_names = list(lora_names)
# Nothing to do = skip.
if len(added_set) == 0 and len(removed_set) == 0:
return
# Only adding, and already peft? Do it the easy way.
if len(removed_set) == 0 and len(prior_set) > 0:
print(f"Adding the LoRA(s) named {added_set} to the model...")
for lora in added_set:
self.model.load_adapter(Path(f"{self.lora_dir}/{lora}"), lora)
return
# If removing anything, disable all and re-add.
if len(removed_set) > 0:
self.model.disable_adapter()
if len(lora_names) > 0:
print("Applying the following LoRAs to {}: {}".format(self.model_name, ', '.join(lora_names)))
params = {}
if not self.cpu:
params['dtype'] = self.model.dtype
if hasattr(self.model, "hf_device_map"):
params['device_map'] = {"base_model.model." + k: v for k, v in self.model.hf_device_map.items()}
elif self.load_in_8bit:
params['device_map'] = {'': 0}
self.model.resize_token_embeddings(len(self.tokenizer))
self.model = PeftModel.from_pretrained(self.model, Path(f"{self.lora_dir}/{lora_names[0]}"), **params)
for lora in lora_names[1:]:
self.model.load_adapter(Path(f"{self.lora_dir}/{lora}"), lora)
if not self.load_in_8bit and not self.cpu:
if not hasattr(self.model, "hf_device_map"):
if torch.has_mps:
device = torch.device('mps')
self.model = self.model.to(device)
else:
self.model = self.model.cuda()
def clear_torch_cache(self):
gc.collect()
if not self.cpu:
device_id = "0" if torch.cuda.is_available() else None
CUDA_DEVICE = f"{self.llm_device}:{device_id}" if device_id else self.llm_device
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def unload_model(self):
del self.model
del self.tokenizer
self.model = self.tokenizer = None
self.clear_torch_cache()
def set_model_path(self, model_path):
self.model_path = model_path
def reload_model(self):
self.unload_model()
self.model_config = self._load_model_config(self.model_name)
if self.use_ptuning_v2:
try:
prefix_encoder_file = open(Path(f'{self.ptuning_dir}/config.json'), 'r')
prefix_encoder_config = json.loads(prefix_encoder_file.read())
prefix_encoder_file.close()
self.model_config.pre_seq_len = prefix_encoder_config['pre_seq_len']
self.model_config.prefix_projection = prefix_encoder_config['prefix_projection']
except Exception:
print("加载PrefixEncoder config.json失败")
self.model, self.tokenizer = self._load_model(self.model_name)
if self.lora:
self._add_lora_to_model([self.lora])
if self.use_ptuning_v2:
try:
prefix_state_dict = torch.load(Path(f'{self.ptuning_dir}/pytorch_model.bin'))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
self.model.transformer.prefix_encoder.float()
except Exception:
print("加载PrefixEncoder模型参数失败")
self.model = self.model.eval()