2023-04-13 23:01:52 +08:00
|
|
|
from langchain.chains import RetrievalQA
|
|
|
|
|
from langchain.prompts import PromptTemplate
|
2023-04-25 20:36:16 +08:00
|
|
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
|
|
|
from langchain.vectorstores import FAISS
|
2023-04-13 23:01:52 +08:00
|
|
|
from langchain.document_loaders import UnstructuredFileLoader
|
|
|
|
|
from models.chatglm_llm import ChatGLM
|
|
|
|
|
import sentence_transformers
|
|
|
|
|
import os
|
|
|
|
|
from configs.model_config import *
|
|
|
|
|
import datetime
|
2023-04-14 00:42:21 +08:00
|
|
|
from typing import List
|
2023-04-17 23:59:22 +08:00
|
|
|
from textsplitter import ChineseTextSplitter
|
2023-04-25 20:36:16 +08:00
|
|
|
from langchain.docstore.document import Document
|
2023-04-13 23:01:52 +08:00
|
|
|
|
|
|
|
|
# return top-k text chunk from vector store
|
2023-04-15 20:01:36 +08:00
|
|
|
VECTOR_SEARCH_TOP_K = 6
|
2023-04-13 23:01:52 +08:00
|
|
|
|
|
|
|
|
# LLM input history length
|
|
|
|
|
LLM_HISTORY_LEN = 3
|
|
|
|
|
|
|
|
|
|
|
2023-04-17 23:59:22 +08:00
|
|
|
def load_file(filepath):
|
2023-04-25 20:36:16 +08:00
|
|
|
if filepath.lower().endswith(".md"):
|
|
|
|
|
loader = UnstructuredFileLoader(filepath, mode="elements")
|
|
|
|
|
docs = loader.load()
|
|
|
|
|
elif filepath.lower().endswith(".pdf"):
|
2023-04-17 23:59:22 +08:00
|
|
|
loader = UnstructuredFileLoader(filepath)
|
|
|
|
|
textsplitter = ChineseTextSplitter(pdf=True)
|
|
|
|
|
docs = loader.load_and_split(textsplitter)
|
|
|
|
|
else:
|
|
|
|
|
loader = UnstructuredFileLoader(filepath, mode="elements")
|
|
|
|
|
textsplitter = ChineseTextSplitter(pdf=False)
|
|
|
|
|
docs = loader.load_and_split(text_splitter=textsplitter)
|
|
|
|
|
return docs
|
|
|
|
|
|
2023-04-26 22:29:20 +08:00
|
|
|
def generate_prompt(related_docs: List[str],
|
|
|
|
|
query: str,
|
|
|
|
|
prompt_template=PROMPT_TEMPLATE) -> str:
|
|
|
|
|
context = "\n".join([doc.page_content for doc in related_docs])
|
|
|
|
|
prompt = prompt_template.replace("{question}", query).replace("{context}", context)
|
|
|
|
|
return prompt
|
2023-04-25 20:36:16 +08:00
|
|
|
|
|
|
|
|
|
2023-04-26 22:29:20 +08:00
|
|
|
def get_docs_with_score(docs_with_score):
|
|
|
|
|
docs=[]
|
|
|
|
|
for doc, score in docs_with_score:
|
|
|
|
|
doc.metadata["score"] = score
|
|
|
|
|
docs.append(doc)
|
|
|
|
|
return docs
|
2023-04-25 20:36:16 +08:00
|
|
|
|
2023-04-13 23:01:52 +08:00
|
|
|
class LocalDocQA:
|
|
|
|
|
llm: object = None
|
|
|
|
|
embeddings: object = None
|
2023-04-22 12:30:27 +08:00
|
|
|
top_k: int = VECTOR_SEARCH_TOP_K
|
2023-04-13 23:01:52 +08:00
|
|
|
|
|
|
|
|
def init_cfg(self,
|
|
|
|
|
embedding_model: str = EMBEDDING_MODEL,
|
|
|
|
|
embedding_device=EMBEDDING_DEVICE,
|
|
|
|
|
llm_history_len: int = LLM_HISTORY_LEN,
|
|
|
|
|
llm_model: str = LLM_MODEL,
|
2023-04-14 00:06:45 +08:00
|
|
|
llm_device=LLM_DEVICE,
|
|
|
|
|
top_k=VECTOR_SEARCH_TOP_K,
|
2023-04-20 12:50:51 +08:00
|
|
|
use_ptuning_v2: bool = USE_PTUNING_V2
|
2023-04-13 23:01:52 +08:00
|
|
|
):
|
|
|
|
|
self.llm = ChatGLM()
|
|
|
|
|
self.llm.load_model(model_name_or_path=llm_model_dict[llm_model],
|
2023-04-20 12:50:51 +08:00
|
|
|
llm_device=llm_device,
|
|
|
|
|
use_ptuning_v2=use_ptuning_v2)
|
2023-04-13 23:01:52 +08:00
|
|
|
self.llm.history_len = llm_history_len
|
|
|
|
|
|
2023-04-25 20:36:16 +08:00
|
|
|
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model],
|
2023-04-22 12:30:27 +08:00
|
|
|
model_kwargs={'device': embedding_device})
|
2023-04-14 00:06:45 +08:00
|
|
|
self.top_k = top_k
|
2023-04-13 23:01:52 +08:00
|
|
|
|
|
|
|
|
def init_knowledge_vector_store(self,
|
2023-04-19 21:29:20 +08:00
|
|
|
filepath: str or List[str],
|
|
|
|
|
vs_path: str or os.PathLike = None):
|
|
|
|
|
loaded_files = []
|
2023-04-14 00:42:21 +08:00
|
|
|
if isinstance(filepath, str):
|
|
|
|
|
if not os.path.exists(filepath):
|
|
|
|
|
print("路径不存在")
|
2023-04-13 23:01:52 +08:00
|
|
|
return None
|
2023-04-14 00:42:21 +08:00
|
|
|
elif os.path.isfile(filepath):
|
|
|
|
|
file = os.path.split(filepath)[-1]
|
|
|
|
|
try:
|
2023-04-17 23:59:22 +08:00
|
|
|
docs = load_file(filepath)
|
2023-04-14 00:42:21 +08:00
|
|
|
print(f"{file} 已成功加载")
|
2023-04-19 21:29:20 +08:00
|
|
|
loaded_files.append(filepath)
|
2023-04-17 23:59:22 +08:00
|
|
|
except Exception as e:
|
|
|
|
|
print(e)
|
2023-04-14 00:42:21 +08:00
|
|
|
print(f"{file} 未能成功加载")
|
|
|
|
|
return None
|
|
|
|
|
elif os.path.isdir(filepath):
|
|
|
|
|
docs = []
|
|
|
|
|
for file in os.listdir(filepath):
|
|
|
|
|
fullfilepath = os.path.join(filepath, file)
|
|
|
|
|
try:
|
2023-04-17 23:59:22 +08:00
|
|
|
docs += load_file(fullfilepath)
|
2023-04-14 00:42:21 +08:00
|
|
|
print(f"{file} 已成功加载")
|
2023-04-19 21:29:20 +08:00
|
|
|
loaded_files.append(fullfilepath)
|
2023-04-17 23:59:22 +08:00
|
|
|
except Exception as e:
|
|
|
|
|
print(e)
|
2023-04-14 00:42:21 +08:00
|
|
|
print(f"{file} 未能成功加载")
|
|
|
|
|
else:
|
2023-04-13 23:01:52 +08:00
|
|
|
docs = []
|
2023-04-14 00:42:21 +08:00
|
|
|
for file in filepath:
|
2023-04-13 23:01:52 +08:00
|
|
|
try:
|
2023-04-17 23:59:22 +08:00
|
|
|
docs += load_file(file)
|
2023-04-13 23:01:52 +08:00
|
|
|
print(f"{file} 已成功加载")
|
2023-04-19 21:29:20 +08:00
|
|
|
loaded_files.append(file)
|
2023-04-17 23:59:22 +08:00
|
|
|
except Exception as e:
|
|
|
|
|
print(e)
|
2023-04-13 23:01:52 +08:00
|
|
|
print(f"{file} 未能成功加载")
|
2023-04-23 21:49:42 +08:00
|
|
|
if len(docs) > 0:
|
|
|
|
|
if vs_path and os.path.isdir(vs_path):
|
2023-04-25 20:36:16 +08:00
|
|
|
vector_store = FAISS.load_local(vs_path, self.embeddings)
|
2023-04-23 21:49:42 +08:00
|
|
|
vector_store.add_documents(docs)
|
|
|
|
|
else:
|
|
|
|
|
if not vs_path:
|
|
|
|
|
vs_path = f"""{VS_ROOT_PATH}{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
|
2023-04-25 20:36:16 +08:00
|
|
|
vector_store = FAISS.from_documents(docs, self.embeddings)
|
2023-04-13 23:01:52 +08:00
|
|
|
|
2023-04-23 21:49:42 +08:00
|
|
|
vector_store.save_local(vs_path)
|
|
|
|
|
return vs_path, loaded_files
|
2023-04-19 21:29:20 +08:00
|
|
|
else:
|
2023-04-23 21:49:42 +08:00
|
|
|
print("文件均未成功加载,请检查依赖包或替换为其他文件再次上传。")
|
|
|
|
|
return None, loaded_files
|
2023-04-13 23:01:52 +08:00
|
|
|
|
|
|
|
|
def get_knowledge_based_answer(self,
|
|
|
|
|
query,
|
|
|
|
|
vs_path,
|
2023-04-26 22:29:20 +08:00
|
|
|
chat_history=[],
|
|
|
|
|
streaming=True):
|
|
|
|
|
self.llm.streaming = streaming
|
2023-04-25 20:36:16 +08:00
|
|
|
vector_store = FAISS.load_local(vs_path, self.embeddings)
|
2023-04-26 22:29:20 +08:00
|
|
|
related_docs_with_score = vector_store.similarity_search_with_score(query,
|
|
|
|
|
k=self.top_k)
|
|
|
|
|
related_docs = get_docs_with_score(related_docs_with_score)
|
|
|
|
|
prompt = generate_prompt(related_docs, query)
|
2023-04-13 23:01:52 +08:00
|
|
|
|
2023-04-26 22:29:20 +08:00
|
|
|
if streaming:
|
|
|
|
|
for result, history in self.llm._call(prompt=prompt,
|
|
|
|
|
history=chat_history):
|
|
|
|
|
history[-1][0] = query
|
|
|
|
|
response = {"query": query,
|
|
|
|
|
"result": result,
|
|
|
|
|
"source_documents": related_docs}
|
|
|
|
|
yield response, history
|
|
|
|
|
else:
|
|
|
|
|
result, history = self.llm._call(prompt=prompt,
|
|
|
|
|
history=chat_history)
|
|
|
|
|
history[-1][0] = query
|
|
|
|
|
response = {"query": query,
|
|
|
|
|
"result": result,
|
|
|
|
|
"source_documents": related_docs}
|
|
|
|
|
return response, history
|