Langchain-Chatchat/server/chat/agent_chat.py

109 lines
5.2 KiB
Python
Raw Normal View History

from langchain.memory import ConversationBufferWindowMemory
from server.agent.tools import tools, tool_names
from server.agent.callbacks import CustomAsyncIteratorCallbackHandler, Status, dumps
from langchain.agents import AgentExecutor, LLMSingleActionAgent
from server.agent.custom_template import CustomOutputParser, prompt
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import LLM_MODEL, TEMPERATURE, HISTORY_LEN
from server.utils import wrap_done, get_ChatOpenAI
from langchain import LLMChain
from typing import AsyncIterable
import asyncio
from langchain.prompts.chat import ChatPromptTemplate
from typing import List
from server.chat.utils import History
import json
async def agent_chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", gt=0.0, le=1.0),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
):
history = [History.from_data(h) for h in history]
async def chat_iterator() -> AsyncIterable[str]:
callback = CustomAsyncIteratorCallbackHandler()
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
)
output_parser = CustomOutputParser()
llm_chain = LLMChain(llm=model, prompt=prompt)
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names,
)
# 把history转成agent的memory
memory = ConversationBufferWindowMemory(k=100)
for message in history:
# 检查消息的角色
if message.role == 'user':
# 添加用户消息
memory.chat_memory.add_user_message(message.content)
else:
# 添加AI消息
memory.chat_memory.add_ai_message(message.content)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent,
tools=tools,
verbose=True,
memory=memory,
)
# TODO: history is not used
input_msg = History(role="user", content="{{ input }}").to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
task = asyncio.create_task(wrap_done(
agent_executor.acall(query, callbacks=[callback], include_run_info=True),
callback.done),
)
if stream:
async for chunk in callback.aiter():
tools_use = []
# Use server-sent-events to stream the response
data = json.loads(chunk)
if data["status"] == Status.start or data["status"] == Status.complete:
continue
if data["status"] == Status.agent_action:
yield json.dumps({"answer": "(正在使用工具,请注意工具栏变化) \n\n"}, ensure_ascii=False)
if data["status"] == Status.agent_finish:
tools_use.append("工具名称: " + data["tool_name"])
tools_use.append("工具输入: " + data["input_str"])
tools_use.append("工具输出: " + data["output_str"])
yield json.dumps({"tools": tools_use}, ensure_ascii=False)
yield json.dumps({"answer": data["llm_token"]}, ensure_ascii=False)
else:
pass
# agent必须要steram=True
# result = []
# async for chunk in callback.aiter():
# data = json.loads(chunk)
# status = data["status"]
# if status == Status.start:
# result.append(chunk)
# elif status == Status.running:
# result[-1]["llm_token"] += chunk["llm_token"]
# elif status == Status.complete:
# result[-1]["status"] = Status.complete
# elif status == Status.agent_finish:
# result.append(chunk)
# elif status == Status.agent_finish:
# pass
# yield dumps(result)
await task
return StreamingResponse(chat_iterator(),
media_type="text/event-stream")