2023-09-05 23:13:42 +08:00
|
|
|
|
import zhipuai
|
2023-09-01 23:58:09 +08:00
|
|
|
|
from server.model_workers.base import ApiModelWorker
|
|
|
|
|
|
from fastchat import conversation as conv
|
|
|
|
|
|
import sys
|
|
|
|
|
|
import json
|
2023-09-06 11:16:16 +08:00
|
|
|
|
from typing import List, Literal,Dict
|
2023-09-01 23:58:09 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ChatGLMWorker(ApiModelWorker):
|
|
|
|
|
|
BASE_URL = "https://open.bigmodel.cn/api/paas/v3/model-api"
|
|
|
|
|
|
SUPPORT_MODELS = ["chatglm_pro", "chatglm_std", "chatglm_lite"]
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
|
self,
|
|
|
|
|
|
*,
|
|
|
|
|
|
model_names: List[str] = ["chatglm-api"],
|
|
|
|
|
|
version: Literal["chatglm_pro", "chatglm_std", "chatglm_lite"] = "chatglm_std",
|
|
|
|
|
|
controller_addr: str,
|
|
|
|
|
|
worker_addr: str,
|
|
|
|
|
|
**kwargs,
|
|
|
|
|
|
):
|
|
|
|
|
|
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
|
|
|
|
|
kwargs.setdefault("context_len", 32768)
|
|
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
self.version = version
|
2023-09-06 11:16:16 +08:00
|
|
|
|
self.zhipuai = zhipuai
|
|
|
|
|
|
from server.utils import get_model_worker_config
|
|
|
|
|
|
self.zhipuai.api_key = get_model_worker_config("chatglm-api").get("api_key")
|
2023-09-01 23:58:09 +08:00
|
|
|
|
# 这里的是chatglm api的模板,其它API的conv_template需要定制
|
|
|
|
|
|
self.conv = conv.Conversation(
|
|
|
|
|
|
name="chatglm-api",
|
|
|
|
|
|
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。",
|
|
|
|
|
|
messages=[],
|
|
|
|
|
|
roles=["Human", "Assistant"],
|
|
|
|
|
|
sep="\n### ",
|
|
|
|
|
|
stop_str="###",
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def generate_stream_gate(self, params):
|
|
|
|
|
|
# TODO: 支持stream参数,维护request_id,传过来的prompt也有问题
|
|
|
|
|
|
super().generate_stream_gate(params)
|
|
|
|
|
|
|
2023-09-06 11:16:16 +08:00
|
|
|
|
model=self.version
|
|
|
|
|
|
# if isinstance(params["prompt"], str):
|
|
|
|
|
|
# prompt=self.prompt_collator(content_user=params["prompt"],
|
|
|
|
|
|
# role_user="user") #[{"role": "user", "content": params["prompt"]}]
|
|
|
|
|
|
# else:
|
|
|
|
|
|
# prompt = params["prompt"]
|
|
|
|
|
|
prompt = params["prompt"]
|
|
|
|
|
|
print(prompt)
|
2023-09-05 23:13:42 +08:00
|
|
|
|
temperature=params.get("temperature")
|
|
|
|
|
|
top_p=params.get("top_p")
|
|
|
|
|
|
stream = params.get("stream")
|
|
|
|
|
|
|
|
|
|
|
|
if stream:
|
|
|
|
|
|
return self.create_stream(model=model,
|
|
|
|
|
|
message=prompt,
|
|
|
|
|
|
top_p=top_p,
|
|
|
|
|
|
temperature=temperature)
|
|
|
|
|
|
else:
|
|
|
|
|
|
return self.create_oneshot(model=model,
|
|
|
|
|
|
message=prompt,
|
|
|
|
|
|
top_p=top_p,
|
|
|
|
|
|
temperature=temperature)
|
|
|
|
|
|
|
|
|
|
|
|
# response = zhipuai.model_api.sse_invoke(
|
|
|
|
|
|
# model=self.version,
|
|
|
|
|
|
# prompt=[{"role": "user", "content": params["prompt"]}],
|
|
|
|
|
|
# temperature=params.get("temperature"),
|
|
|
|
|
|
# top_p=params.get("top_p"),
|
|
|
|
|
|
# incremental=False,
|
|
|
|
|
|
# )
|
|
|
|
|
|
# for e in response.events():
|
|
|
|
|
|
# if e.event == "add":
|
|
|
|
|
|
# yield json.dumps({"error_code": 0, "text": e.data}, ensure_ascii=False).encode() + b"\0"
|
|
|
|
|
|
# # TODO: 更健壮的消息处理
|
|
|
|
|
|
# # elif e.event == "finish":
|
|
|
|
|
|
# # ...
|
2023-09-01 23:58:09 +08:00
|
|
|
|
|
|
|
|
|
|
def get_embeddings(self, params):
|
|
|
|
|
|
# TODO: 支持embeddings
|
|
|
|
|
|
print("embedding")
|
|
|
|
|
|
print(params)
|
|
|
|
|
|
|
2023-09-06 11:16:16 +08:00
|
|
|
|
def create_oneshot(self,
|
|
|
|
|
|
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
|
|
|
|
|
model:str = "chatglm_pro",
|
|
|
|
|
|
top_p:float=0.7,
|
|
|
|
|
|
temperature:float=0.9,
|
|
|
|
|
|
**kwargs
|
|
|
|
|
|
):
|
|
|
|
|
|
response = self.zhipuai.model_api.invoke(
|
|
|
|
|
|
model = model,
|
|
|
|
|
|
prompt = message,
|
|
|
|
|
|
top_p = top_p,
|
|
|
|
|
|
temperature = temperature
|
|
|
|
|
|
)
|
|
|
|
|
|
if response["code"] == 200:
|
|
|
|
|
|
result = response["data"]["choices"][-1]["content"]
|
|
|
|
|
|
return json.dumps({"error_code": 0, "text": result}, ensure_ascii=False).encode() + b"\0"
|
|
|
|
|
|
else:
|
|
|
|
|
|
#TODO 确认openai的error code
|
|
|
|
|
|
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
|
|
|
|
|
return json.dumps({"error_code": response['code'],
|
|
|
|
|
|
"text": f"error occurred, error code:{response['code']},error msg:{response['msg']}"
|
|
|
|
|
|
},
|
|
|
|
|
|
ensure_ascii=False).encode() + b"\0"
|
|
|
|
|
|
|
|
|
|
|
|
def create_stream(self,
|
|
|
|
|
|
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
|
|
|
|
|
model:str = "chatglm_pro",
|
|
|
|
|
|
top_p:float=0.7,
|
|
|
|
|
|
temperature:float=0.9,
|
|
|
|
|
|
**kwargs
|
|
|
|
|
|
):
|
|
|
|
|
|
response = self.zhipuai.model_api.sse_invoke(
|
|
|
|
|
|
model = model,
|
|
|
|
|
|
prompt = message,
|
|
|
|
|
|
top_p = top_p,
|
|
|
|
|
|
temperature = temperature,
|
|
|
|
|
|
incremental = True
|
|
|
|
|
|
)
|
|
|
|
|
|
for event in response.events():
|
|
|
|
|
|
if event.event == "add":
|
|
|
|
|
|
# yield event.data
|
|
|
|
|
|
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
|
|
|
|
|
elif event.event == "error" or event.event == "interrupted":
|
|
|
|
|
|
# return event.data
|
|
|
|
|
|
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
|
|
|
|
|
elif event.event == "finish":
|
|
|
|
|
|
# yield event.data
|
|
|
|
|
|
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
|
|
|
|
|
print(event.meta)
|
|
|
|
|
|
else:
|
|
|
|
|
|
print("Something get wrong with ZhipuAPILoader.create_chat_completion_stream")
|
|
|
|
|
|
print(event.data)
|
|
|
|
|
|
yield json.dumps({"error_code": 1, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
|
|
|
|
|
|
|
|
|
|
|
def create_chat_completion(self,
|
|
|
|
|
|
model: str = "chatglm_pro",
|
|
|
|
|
|
prompt:List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
|
|
|
|
|
top_p:float=0.7,
|
|
|
|
|
|
temperature:float=0.9,
|
|
|
|
|
|
stream:bool=False):
|
|
|
|
|
|
|
|
|
|
|
|
if stream:
|
|
|
|
|
|
return self.create_stream(model=model,
|
|
|
|
|
|
message=prompt,
|
|
|
|
|
|
top_p=top_p,
|
|
|
|
|
|
temperature=temperature)
|
|
|
|
|
|
else:
|
|
|
|
|
|
return self.create_oneshot(model=model,
|
|
|
|
|
|
message=prompt,
|
|
|
|
|
|
top_p=top_p,
|
|
|
|
|
|
temperature=temperature)
|
|
|
|
|
|
|
|
|
|
|
|
async def acreate_chat_completion(self,
|
|
|
|
|
|
prompt: List[Dict[str,str]]=[{"role":"system","content":"你是一个人工智能助手"},
|
|
|
|
|
|
{"role":"user","content":"你好。"}],
|
|
|
|
|
|
model:str = "chatglm_pro",
|
|
|
|
|
|
top_p:float=0.7,
|
|
|
|
|
|
temperature:float=0.9,
|
|
|
|
|
|
**kwargs):
|
|
|
|
|
|
response = await self.zhipuai.model_api.async_invoke(
|
|
|
|
|
|
model = model,
|
|
|
|
|
|
prompt = prompt,
|
|
|
|
|
|
top_p = top_p,
|
|
|
|
|
|
temperature = temperature
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if response["code"] == 200:
|
|
|
|
|
|
task_id = response['data']['task_id']
|
|
|
|
|
|
status = "PROCESSING"
|
|
|
|
|
|
while status != "SUCCESS":
|
|
|
|
|
|
# await asyncio.sleep(3) #
|
|
|
|
|
|
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
|
|
|
|
|
|
status = resp['data']['task_status']
|
|
|
|
|
|
return resp['data']['choices'][-1]['content']
|
|
|
|
|
|
else:
|
|
|
|
|
|
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
def create_completion(self,
|
|
|
|
|
|
prompt:str="你好",
|
|
|
|
|
|
model:str="chatglm_pro",
|
|
|
|
|
|
top_p:float=0.7,
|
|
|
|
|
|
temperature:float=0.9,
|
|
|
|
|
|
stream:bool=False,
|
|
|
|
|
|
**kwargs):
|
|
|
|
|
|
message = self.prompt_collator(content_user=prompt)
|
|
|
|
|
|
if stream:
|
|
|
|
|
|
return self.create_stream(model=model,
|
|
|
|
|
|
message=message,
|
|
|
|
|
|
top_p=top_p,
|
|
|
|
|
|
temperature=temperature)
|
|
|
|
|
|
else:
|
|
|
|
|
|
return self.create_oneshot(model=model,
|
|
|
|
|
|
message=message,
|
|
|
|
|
|
top_p=top_p,
|
|
|
|
|
|
temperature=temperature)
|
|
|
|
|
|
#? make it a sync function?
|
|
|
|
|
|
async def acreate_completion(self,
|
|
|
|
|
|
prompt:str="你好",
|
|
|
|
|
|
model:str = "chatglm_pro",
|
|
|
|
|
|
top_p:float=0.7,
|
|
|
|
|
|
temperature:float=0.9,
|
|
|
|
|
|
**kwargs):
|
|
|
|
|
|
message = self.prompt_collator(content_user=prompt)
|
|
|
|
|
|
response = self.zhipuai.model_api.async_invoke(
|
|
|
|
|
|
model = model,
|
|
|
|
|
|
prompt = message,
|
|
|
|
|
|
top_p = top_p,
|
|
|
|
|
|
temperature = temperature
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if response["code"] == 200:
|
|
|
|
|
|
task_id = response['data']['task_id']
|
|
|
|
|
|
status = "PROCESSING"
|
|
|
|
|
|
while status != "SUCCESS":
|
|
|
|
|
|
# await asyncio.sleep(3) #
|
|
|
|
|
|
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
|
|
|
|
|
|
status = resp['data']['task_status']
|
|
|
|
|
|
return resp['data']['choices'][-1]['content']
|
|
|
|
|
|
else:
|
|
|
|
|
|
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
|
|
|
|
|
return
|
|
|
|
|
|
|
2023-09-01 23:58:09 +08:00
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
import uvicorn
|
|
|
|
|
|
from server.utils import MakeFastAPIOffline
|
|
|
|
|
|
from fastchat.serve.model_worker import app
|
|
|
|
|
|
|
|
|
|
|
|
worker = ChatGLMWorker(
|
|
|
|
|
|
controller_addr="http://127.0.0.1:20001",
|
|
|
|
|
|
worker_addr="http://127.0.0.1:20003",
|
|
|
|
|
|
)
|
|
|
|
|
|
sys.modules["fastchat.serve.model_worker"].worker = worker
|
|
|
|
|
|
MakeFastAPIOffline(app)
|
|
|
|
|
|
uvicorn.run(app, port=20003)
|