Langchain-Chatchat/server/model_workers/zhipu.py

241 lines
10 KiB
Python
Raw Normal View History

import zhipuai
from server.model_workers.base import ApiModelWorker
from fastchat import conversation as conv
import sys
import json
from typing import List, Literal,Dict
class ChatGLMWorker(ApiModelWorker):
BASE_URL = "https://open.bigmodel.cn/api/paas/v3/model-api"
SUPPORT_MODELS = ["chatglm_pro", "chatglm_std", "chatglm_lite"]
def __init__(
self,
*,
model_names: List[str] = ["chatglm-api"],
version: Literal["chatglm_pro", "chatglm_std", "chatglm_lite"] = "chatglm_std",
controller_addr: str,
worker_addr: str,
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 32768)
super().__init__(**kwargs)
self.version = version
self.zhipuai = zhipuai
from server.utils import get_model_worker_config
self.zhipuai.api_key = get_model_worker_config("chatglm-api").get("api_key")
# 这里的是chatglm api的模板其它API的conv_template需要定制
self.conv = conv.Conversation(
name="chatglm-api",
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。",
messages=[],
roles=["Human", "Assistant"],
sep="\n### ",
stop_str="###",
)
def generate_stream_gate(self, params):
# TODO: 支持stream参数维护request_id传过来的prompt也有问题
super().generate_stream_gate(params)
model=self.version
# if isinstance(params["prompt"], str):
# prompt=self.prompt_collator(content_user=params["prompt"],
# role_user="user") #[{"role": "user", "content": params["prompt"]}]
# else:
# prompt = params["prompt"]
prompt = params["prompt"]
print(prompt)
temperature=params.get("temperature")
top_p=params.get("top_p")
stream = params.get("stream")
if stream:
return self.create_stream(model=model,
message=prompt,
top_p=top_p,
temperature=temperature)
else:
return self.create_oneshot(model=model,
message=prompt,
top_p=top_p,
temperature=temperature)
# response = zhipuai.model_api.sse_invoke(
# model=self.version,
# prompt=[{"role": "user", "content": params["prompt"]}],
# temperature=params.get("temperature"),
# top_p=params.get("top_p"),
# incremental=False,
# )
# for e in response.events():
# if e.event == "add":
# yield json.dumps({"error_code": 0, "text": e.data}, ensure_ascii=False).encode() + b"\0"
# # TODO: 更健壮的消息处理
# # elif e.event == "finish":
# # ...
def get_embeddings(self, params):
# TODO: 支持embeddings
print("embedding")
print(params)
def create_oneshot(self,
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs
):
response = self.zhipuai.model_api.invoke(
model = model,
prompt = message,
top_p = top_p,
temperature = temperature
)
if response["code"] == 200:
result = response["data"]["choices"][-1]["content"]
return json.dumps({"error_code": 0, "text": result}, ensure_ascii=False).encode() + b"\0"
else:
#TODO 确认openai的error code
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
return json.dumps({"error_code": response['code'],
"text": f"error occurred, error code:{response['code']},error msg:{response['msg']}"
},
ensure_ascii=False).encode() + b"\0"
def create_stream(self,
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs
):
response = self.zhipuai.model_api.sse_invoke(
model = model,
prompt = message,
top_p = top_p,
temperature = temperature,
incremental = True
)
for event in response.events():
if event.event == "add":
# yield event.data
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
elif event.event == "error" or event.event == "interrupted":
# return event.data
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
elif event.event == "finish":
# yield event.data
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
print(event.meta)
else:
print("Something get wrong with ZhipuAPILoader.create_chat_completion_stream")
print(event.data)
yield json.dumps({"error_code": 1, "text": event.data}, ensure_ascii=False).encode() + b"\0"
def create_chat_completion(self,
model: str = "chatglm_pro",
prompt:List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
top_p:float=0.7,
temperature:float=0.9,
stream:bool=False):
if stream:
return self.create_stream(model=model,
message=prompt,
top_p=top_p,
temperature=temperature)
else:
return self.create_oneshot(model=model,
message=prompt,
top_p=top_p,
temperature=temperature)
async def acreate_chat_completion(self,
prompt: List[Dict[str,str]]=[{"role":"system","content":"你是一个人工智能助手"},
{"role":"user","content":"你好。"}],
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs):
response = await self.zhipuai.model_api.async_invoke(
model = model,
prompt = prompt,
top_p = top_p,
temperature = temperature
)
if response["code"] == 200:
task_id = response['data']['task_id']
status = "PROCESSING"
while status != "SUCCESS":
# await asyncio.sleep(3) #
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
status = resp['data']['task_status']
return resp['data']['choices'][-1]['content']
else:
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
return
def create_completion(self,
prompt:str="你好",
model:str="chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
stream:bool=False,
**kwargs):
message = self.prompt_collator(content_user=prompt)
if stream:
return self.create_stream(model=model,
message=message,
top_p=top_p,
temperature=temperature)
else:
return self.create_oneshot(model=model,
message=message,
top_p=top_p,
temperature=temperature)
#? make it a sync function?
async def acreate_completion(self,
prompt:str="你好",
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs):
message = self.prompt_collator(content_user=prompt)
response = self.zhipuai.model_api.async_invoke(
model = model,
prompt = message,
top_p = top_p,
temperature = temperature
)
if response["code"] == 200:
task_id = response['data']['task_id']
status = "PROCESSING"
while status != "SUCCESS":
# await asyncio.sleep(3) #
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
status = resp['data']['task_status']
return resp['data']['choices'][-1]['content']
else:
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
return
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = ChatGLMWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:20003",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=20003)