Langchain-Chatchat/webui_pages/knowledge_base/knowledge_base.py

308 lines
12 KiB
Python
Raw Normal View History

2023-08-01 14:47:38 +08:00
import streamlit as st
from webui_pages.utils import *
2023-08-12 01:26:17 +08:00
from st_aggrid import AgGrid, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder
import pandas as pd
from server.knowledge_base.utils import get_file_path, LOADER_DICT
from server.knowledge_base.kb_service.base import get_kb_details, get_kb_file_details
from typing import Literal, Dict, Tuple
发版:v0.2.5 (#1620) * 优化configs (#1474) * remove llm_model_dict * optimize configs * fix get_model_path * 更改一些默认参数,添加千帆的默认配置 * Update server_config.py.example * fix merge conflict for #1474 (#1494) * 修复ChatGPT api_base_url错误;用户可以在model_config在线模型配置中覆盖默认的api_base_url (#1496) * 优化LLM模型列表获取、切换的逻辑: (#1497) 1、更准确的获取未运行的可用模型 2、优化WEBUI模型列表显示与切换的控制逻辑 * 更新migrate.py和init_database.py,加强知识库迁移工具: (#1498) 1. 添加--update-in-db参数,按照数据库信息,从本地文件更新向量库 2. 添加--increament参数,根据本地文件增量更新向量库 3. 添加--prune-db参数,删除本地文件后,自动清理相关的向量库 4. 添加--prune-folder参数,根据数据库信息,清理无用的本地文件 5. 取消--update-info-only参数。数据库中存储了向量库信息,该操作意义不大 6. 添加--kb-name参数,所有操作支持指定操作的知识库,不指定则为所有本地知识库 7. 添加知识库迁移的测试用例 8. 删除milvus_kb_service的save_vector_store方法 * feat: support volc fangzhou * 使火山方舟正常工作,添加错误处理和测试用例 * feat: support volc fangzhou (#1501) * feat: support volc fangzhou --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> * 第一版初步agent实现 (#1503) * 第一版初步agent实现 * 增加steaming参数 * 修改了weather.py --------- Co-authored-by: zR <zRzRzRzRzRzRzR> * 添加configs/prompt_config.py,允许用户自定义prompt模板: (#1504) 1、 默认包含2个模板,分别用于LLM对话,知识库和搜索引擎对话 2、 server/utils.py提供函数get_prompt_template,获取指定的prompt模板内容(支持热加载) 3、 api.py中chat/knowledge_base_chat/search_engine_chat接口支持prompt_name参数 * 增加其它模型的参数适配 * 增加传入矢量名称加载 * 1. 搜索引擎问答支持历史记录; 2. 修复知识库问答历史记录传参错误:用户输入被传入history,问题出在webui中重复获取历史消息,api知识库对话接口并无问题。 * langchain日志开关 * move wrap_done & get_ChatOpenAI from server.chat.utils to server.utils (#1506) * 修复faiss_pool知识库缓存key错误 (#1507) * fix ReadMe anchor link (#1500) * fix : Duplicate variable and function name (#1509) Co-authored-by: Jim <zhangpengyi@taijihuabao.com> * Update README.md * fix #1519: streamlit-chatbox旧版BUG,但新版有兼容问题,先在webui中作处理,并限定chatbox版本 (#1525) close #1519 * 【功能新增】在线 LLM 模型支持阿里云通义千问 (#1534) * feat: add qwen-api * 使Qwen API支持temperature参数;添加测试用例 * 将online-api的sdk列为可选依赖 --------- Co-authored-by: liunux4odoo <liunux@qq.com> * 处理序列化至磁盘的逻辑 * remove depends on volcengine * update kb_doc_api: use Form instead of Body when upload file * 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 (#1554) 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 将本项目相关服务加入无代理列表,避免fastchat的服务器请求错误。(windows下无效) * update QR code * update readme_en,readme,requirements_api,requirements,model_config.py.example:测试baichuan2-7b;更新相关文档 * 新增特性:1.支持vllm推理加速框架;2. 更新支持模型列表 * 更新文件:1. startup,model_config.py.example,serve_config.py.example,FAQ * 1. debug vllm加速框架完毕;2. 修改requirements,requirements_api对vllm的依赖;3.注释掉serve_config中baichuan-7b的device为cpu的配置 * 1. 更新congif中关于vllm后端相关说明;2. 更新requirements,requirements_api; * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 (#1611) * Dev (#1613) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * fix: set vllm based on platform to avoid error on windows * fix: langchain warnings for import from root * 修复webui中重建知识库以及对话界面UI错误 (#1615) * 修复bug:webui点重建知识库时,如果存在不支持的文件会导致整个接口错误;migrate中没有导入CHUNK_SIZE * 修复:webui对话界面的expander一直为running状态;简化历史消息获取方法 * 根据官方文档,添加对英文版的bge embedding的指示模板 (#1585) Co-authored-by: zR <2448370773@qq.com> * Dev (#1618) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更改readme 0928 (#1619) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更新readme * fix readme * 处理序列化至磁盘的逻辑 * update version number to v0.2.5 --------- Co-authored-by: qiankunli <qiankun.li@qq.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: Water Zheng <1499383852@qq.com> Co-authored-by: Jim Zhang <dividi_z@163.com> Co-authored-by: Jim <zhangpengyi@taijihuabao.com> Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com> Co-authored-by: Leego <leegodev@hotmail.com> Co-authored-by: hzg0601 <hzg0601@163.com> Co-authored-by: WilliamChen-luckbob <58684828+WilliamChen-luckbob@users.noreply.github.com>
2023-09-28 23:30:21 +08:00
from configs import (kbs_config,
EMBEDDING_MODEL, DEFAULT_VS_TYPE,
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE)
from server.utils import list_embed_models
import os
import time
2023-08-11 23:36:31 +08:00
# SENTENCE_SIZE = 100
2023-08-12 01:26:17 +08:00
cell_renderer = JsCode("""function(params) {if(params.value==true){return ''}else{return '×'}}""")
2023-08-01 14:47:38 +08:00
2023-08-08 23:58:44 +08:00
def config_aggrid(
2023-08-10 23:51:10 +08:00
df: pd.DataFrame,
columns: Dict[Tuple[str, str], Dict] = {},
selection_mode: Literal["single", "multiple", "disabled"] = "single",
use_checkbox: bool = False,
2023-08-08 23:58:44 +08:00
) -> GridOptionsBuilder:
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_column("No", width=40)
for (col, header), kw in columns.items():
gb.configure_column(col, header, wrapHeaderText=True, **kw)
gb.configure_selection(
2023-08-11 23:36:31 +08:00
selection_mode=selection_mode,
use_checkbox=use_checkbox,
# pre_selected_rows=st.session_state.get("selected_rows", [0]),
)
2023-08-08 23:58:44 +08:00
return gb
def file_exists(kb: str, selected_rows: List) -> Tuple[str, str]:
'''
check whether a doc file exists in local knowledge base folder.
return the file's name and path if it exists.
'''
if selected_rows:
file_name = selected_rows[0]["file_name"]
file_path = get_file_path(kb, file_name)
if os.path.isfile(file_path):
return file_name, file_path
return "", ""
2023-08-01 15:08:19 +08:00
def knowledge_base_page(api: ApiRequest):
2023-08-12 14:08:21 +08:00
try:
kb_list = {x["kb_name"]: x for x in get_kb_details()}
2023-08-12 14:08:21 +08:00
except Exception as e:
st.error("获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。")
st.stop()
kb_names = list(kb_list.keys())
2023-08-12 01:26:17 +08:00
if "selected_kb_name" in st.session_state and st.session_state["selected_kb_name"] in kb_names:
selected_kb_index = kb_names.index(st.session_state["selected_kb_name"])
else:
selected_kb_index = 0
if "selected_kb_info" not in st.session_state:
st.session_state["selected_kb_info"] = ""
def format_selected_kb(kb_name: str) -> str:
if kb := kb_list.get(kb_name):
return f"{kb_name} ({kb['vs_type']} @ {kb['embed_model']})"
else:
return kb_name
2023-08-11 23:36:31 +08:00
selected_kb = st.selectbox(
2023-08-12 01:26:17 +08:00
"请选择或新建知识库:",
kb_names + ["新建知识库"],
format_func=format_selected_kb,
2023-08-12 01:26:17 +08:00
index=selected_kb_index
)
2023-08-11 23:36:31 +08:00
if selected_kb == "新建知识库":
with st.form("新建知识库"):
kb_name = st.text_input(
"新建知识库名称",
placeholder="新知识库名称,不支持中文命名",
key="kb_name",
)
kb_info = st.text_input(
"知识库简介",
placeholder="知识库简介方便Agent查找",
key="kb_info",
)
2023-08-11 23:36:31 +08:00
cols = st.columns(2)
vs_types = list(kbs_config.keys())
vs_type = cols[0].selectbox(
"向量库类型",
vs_types,
index=vs_types.index(DEFAULT_VS_TYPE),
key="vs_type",
)
发版:v0.2.5 (#1620) * 优化configs (#1474) * remove llm_model_dict * optimize configs * fix get_model_path * 更改一些默认参数,添加千帆的默认配置 * Update server_config.py.example * fix merge conflict for #1474 (#1494) * 修复ChatGPT api_base_url错误;用户可以在model_config在线模型配置中覆盖默认的api_base_url (#1496) * 优化LLM模型列表获取、切换的逻辑: (#1497) 1、更准确的获取未运行的可用模型 2、优化WEBUI模型列表显示与切换的控制逻辑 * 更新migrate.py和init_database.py,加强知识库迁移工具: (#1498) 1. 添加--update-in-db参数,按照数据库信息,从本地文件更新向量库 2. 添加--increament参数,根据本地文件增量更新向量库 3. 添加--prune-db参数,删除本地文件后,自动清理相关的向量库 4. 添加--prune-folder参数,根据数据库信息,清理无用的本地文件 5. 取消--update-info-only参数。数据库中存储了向量库信息,该操作意义不大 6. 添加--kb-name参数,所有操作支持指定操作的知识库,不指定则为所有本地知识库 7. 添加知识库迁移的测试用例 8. 删除milvus_kb_service的save_vector_store方法 * feat: support volc fangzhou * 使火山方舟正常工作,添加错误处理和测试用例 * feat: support volc fangzhou (#1501) * feat: support volc fangzhou --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> * 第一版初步agent实现 (#1503) * 第一版初步agent实现 * 增加steaming参数 * 修改了weather.py --------- Co-authored-by: zR <zRzRzRzRzRzRzR> * 添加configs/prompt_config.py,允许用户自定义prompt模板: (#1504) 1、 默认包含2个模板,分别用于LLM对话,知识库和搜索引擎对话 2、 server/utils.py提供函数get_prompt_template,获取指定的prompt模板内容(支持热加载) 3、 api.py中chat/knowledge_base_chat/search_engine_chat接口支持prompt_name参数 * 增加其它模型的参数适配 * 增加传入矢量名称加载 * 1. 搜索引擎问答支持历史记录; 2. 修复知识库问答历史记录传参错误:用户输入被传入history,问题出在webui中重复获取历史消息,api知识库对话接口并无问题。 * langchain日志开关 * move wrap_done & get_ChatOpenAI from server.chat.utils to server.utils (#1506) * 修复faiss_pool知识库缓存key错误 (#1507) * fix ReadMe anchor link (#1500) * fix : Duplicate variable and function name (#1509) Co-authored-by: Jim <zhangpengyi@taijihuabao.com> * Update README.md * fix #1519: streamlit-chatbox旧版BUG,但新版有兼容问题,先在webui中作处理,并限定chatbox版本 (#1525) close #1519 * 【功能新增】在线 LLM 模型支持阿里云通义千问 (#1534) * feat: add qwen-api * 使Qwen API支持temperature参数;添加测试用例 * 将online-api的sdk列为可选依赖 --------- Co-authored-by: liunux4odoo <liunux@qq.com> * 处理序列化至磁盘的逻辑 * remove depends on volcengine * update kb_doc_api: use Form instead of Body when upload file * 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 (#1554) 将所有httpx请求改为使用Client,提高效率,方便以后设置代理等。 将本项目相关服务加入无代理列表,避免fastchat的服务器请求错误。(windows下无效) * update QR code * update readme_en,readme,requirements_api,requirements,model_config.py.example:测试baichuan2-7b;更新相关文档 * 新增特性:1.支持vllm推理加速框架;2. 更新支持模型列表 * 更新文件:1. startup,model_config.py.example,serve_config.py.example,FAQ * 1. debug vllm加速框架完毕;2. 修改requirements,requirements_api对vllm的依赖;3.注释掉serve_config中baichuan-7b的device为cpu的配置 * 1. 更新congif中关于vllm后端相关说明;2. 更新requirements,requirements_api; * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 (#1611) * Dev (#1613) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * fix: set vllm based on platform to avoid error on windows * fix: langchain warnings for import from root * 修复webui中重建知识库以及对话界面UI错误 (#1615) * 修复bug:webui点重建知识库时,如果存在不支持的文件会导致整个接口错误;migrate中没有导入CHUNK_SIZE * 修复:webui对话界面的expander一直为running状态;简化历史消息获取方法 * 根据官方文档,添加对英文版的bge embedding的指示模板 (#1585) Co-authored-by: zR <2448370773@qq.com> * Dev (#1618) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更改readme 0928 (#1619) * 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写 * issue提到的一个bug * 温度最小改成0,但是不应该支持负数 * 修改了最小的温度 * 增加了部分Agent支持和修改了启动文件的部分bug * 修改了GPU数量配置文件 * 1 1 * 修复配置文件错误 * 更新readme,稳定测试 * 更新readme * fix readme * 处理序列化至磁盘的逻辑 * update version number to v0.2.5 --------- Co-authored-by: qiankunli <qiankun.li@qq.com> Co-authored-by: liqiankun.1111 <liqiankun.1111@bytedance.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: Water Zheng <1499383852@qq.com> Co-authored-by: Jim Zhang <dividi_z@163.com> Co-authored-by: Jim <zhangpengyi@taijihuabao.com> Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com> Co-authored-by: Leego <leegodev@hotmail.com> Co-authored-by: hzg0601 <hzg0601@163.com> Co-authored-by: WilliamChen-luckbob <58684828+WilliamChen-luckbob@users.noreply.github.com>
2023-09-28 23:30:21 +08:00
embed_models = list_embed_models()
2023-08-11 23:36:31 +08:00
embed_model = cols[1].selectbox(
"Embedding 模型",
embed_models,
index=embed_models.index(EMBEDDING_MODEL),
key="embed_model",
)
submit_create_kb = st.form_submit_button(
"新建",
# disabled=not bool(kb_name),
use_container_width=True,
)
if submit_create_kb:
if not kb_name or not kb_name.strip():
st.error(f"知识库名称不能为空!")
elif kb_name in kb_list:
st.error(f"名为 {kb_name} 的知识库已经存在!")
else:
ret = api.create_knowledge_base(
knowledge_base_name=kb_name,
vector_store_type=vs_type,
embed_model=embed_model,
)
2023-08-18 11:47:49 +08:00
st.toast(ret.get("msg", " "))
2023-08-12 01:26:17 +08:00
st.session_state["selected_kb_name"] = kb_name
st.session_state["selected_kb_info"] = kb_info
2023-08-12 01:26:17 +08:00
st.experimental_rerun()
2023-08-11 23:36:31 +08:00
elif selected_kb:
kb = selected_kb
st.session_state["selected_kb_info"] = kb_list[kb]['kb_info']
2023-08-11 23:36:31 +08:00
# 上传文件
files = st.file_uploader("上传知识文件:",
2023-08-11 23:36:31 +08:00
[i for ls in LOADER_DICT.values() for i in ls],
accept_multiple_files=True,
)
kb_info = st.text_area("请输入知识库介绍:", value=st.session_state["selected_kb_info"], max_chars=None, key=None,
help=None, on_change=None, args=None, kwargs=None)
2023-08-11 23:36:31 +08:00
if kb_info != st.session_state["selected_kb_info"]:
st.session_state["selected_kb_info"] = kb_info
api.update_kb_info(kb, kb_info)
2023-09-15 10:58:52 +08:00
# with st.sidebar:
with st.expander(
"文件处理配置",
expanded=True,
):
cols = st.columns(3)
chunk_size = cols[0].number_input("单段文本最大长度:", 1, 1000, CHUNK_SIZE)
chunk_overlap = cols[1].number_input("相邻文本重合长度:", 0, chunk_size, OVERLAP_SIZE)
2023-09-15 10:58:52 +08:00
cols[2].write("")
cols[2].write("")
zh_title_enhance = cols[2].checkbox("开启中文标题加强", ZH_TITLE_ENHANCE)
2023-08-11 23:36:31 +08:00
if st.button(
"添加文件到知识库",
2023-08-11 23:36:31 +08:00
# use_container_width=True,
disabled=len(files) == 0,
):
ret = api.upload_kb_docs(files,
knowledge_base_name=kb,
override=True,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance)
if msg := check_success_msg(ret):
st.toast(msg, icon="")
elif msg := check_error_msg(ret):
st.toast(msg, icon="")
2023-08-11 23:36:31 +08:00
st.divider()
# 知识库详情
# st.info("请选择文件,点击按钮进行操作。")
doc_details = pd.DataFrame(get_kb_file_details(kb))
2023-08-11 23:36:31 +08:00
if not len(doc_details):
st.info(f"知识库 `{kb}` 中暂无文件")
else:
st.write(f"知识库 `{kb}` 中已有文件:")
2023-08-12 01:26:17 +08:00
st.info("知识库中包含源文件与向量库,请从下表中选择文件后操作")
2023-08-11 23:36:31 +08:00
doc_details.drop(columns=["kb_name"], inplace=True)
doc_details = doc_details[[
2023-09-15 11:04:23 +08:00
"No", "file_name", "document_loader", "text_splitter", "docs_count", "in_folder", "in_db",
2023-08-11 23:36:31 +08:00
]]
2023-08-12 01:26:17 +08:00
# doc_details["in_folder"] = doc_details["in_folder"].replace(True, "✓").replace(False, "×")
# doc_details["in_db"] = doc_details["in_db"].replace(True, "✓").replace(False, "×")
2023-08-11 23:36:31 +08:00
gb = config_aggrid(
doc_details,
{
2023-08-12 01:26:17 +08:00
("No", "序号"): {},
2023-08-11 23:36:31 +08:00
("file_name", "文档名称"): {},
# ("file_ext", "文档类型"): {},
# ("file_version", "文档版本"): {},
("document_loader", "文档加载器"): {},
("docs_count", "文档数量"): {},
2023-09-15 11:04:23 +08:00
("text_splitter", "分词器"): {},
2023-08-11 23:36:31 +08:00
# ("create_time", "创建时间"): {},
2023-08-12 01:26:17 +08:00
("in_folder", "源文件"): {"cellRenderer": cell_renderer},
("in_db", "向量库"): {"cellRenderer": cell_renderer},
2023-08-11 23:36:31 +08:00
},
"multiple",
)
doc_grid = AgGrid(
doc_details,
gb.build(),
columns_auto_size_mode="FIT_CONTENTS",
theme="alpine",
custom_css={
"#gridToolBar": {"display": "none"},
},
allow_unsafe_jscode=True,
enable_enterprise_modules=False
2023-08-11 23:36:31 +08:00
)
selected_rows = doc_grid.get("selected_rows", [])
cols = st.columns(4)
file_name, file_path = file_exists(kb, selected_rows)
if file_path:
2023-08-11 23:36:31 +08:00
with open(file_path, "rb") as fp:
cols[0].download_button(
"下载选中文档",
fp,
file_name=file_name,
use_container_width=True, )
else:
cols[0].download_button(
"下载选中文档",
"",
disabled=True,
use_container_width=True, )
2023-08-12 01:26:17 +08:00
st.write()
2023-08-11 23:36:31 +08:00
# 将文件分词并加载到向量库中
if cols[1].button(
2023-08-12 01:26:17 +08:00
"重新添加至向量库" if selected_rows and (pd.DataFrame(selected_rows)["in_db"]).any() else "添加至向量库",
disabled=not file_exists(kb, selected_rows)[0],
2023-08-11 23:36:31 +08:00
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.update_kb_docs(kb,
file_names=file_names,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance)
2023-08-11 23:36:31 +08:00
st.experimental_rerun()
# 将文件从向量库中删除,但不删除文件本身。
if cols[2].button(
"从向量库删除",
disabled=not (selected_rows and selected_rows[0]["in_db"]),
2023-08-11 23:36:31 +08:00
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names)
2023-08-11 23:36:31 +08:00
st.experimental_rerun()
if cols[3].button(
2023-08-12 01:26:17 +08:00
"从知识库中删除",
2023-08-11 23:36:31 +08:00
type="primary",
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names, delete_content=True)
2023-08-11 23:36:31 +08:00
st.experimental_rerun()
st.divider()
cols = st.columns(3)
if cols[0].button(
"依据源文件重建向量库",
# help="无需上传文件通过其它方式将文档拷贝到对应知识库content目录下点击本按钮即可重建知识库。",
use_container_width=True,
type="primary",
):
with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
2023-08-12 01:26:17 +08:00
empty = st.empty()
empty.progress(0.0, "")
for d in api.recreate_vector_store(kb,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance):
if msg := check_error_msg(d):
st.toast(msg)
else:
empty.progress(d["finished"] / d["total"], d["msg"])
2023-08-12 01:26:17 +08:00
st.experimental_rerun()
2023-08-11 23:36:31 +08:00
if cols[2].button(
"删除知识库",
use_container_width=True,
):
ret = api.delete_knowledge_base(kb)
2023-08-18 11:47:49 +08:00
st.toast(ret.get("msg", " "))
time.sleep(1)
st.experimental_rerun()