Langchain-Chatchat/document_loaders/mypdfloader.py

38 lines
1.3 KiB
Python
Raw Normal View History

from typing import List
from langchain.document_loaders.unstructured import UnstructuredFileLoader
class RapidOCRPDFLoader(UnstructuredFileLoader):
def _get_elements(self) -> List:
def pdf2text(filepath):
import fitz
from rapidocr_onnxruntime import RapidOCR
import numpy as np
ocr = RapidOCR()
doc = fitz.open(filepath)
resp = ""
for page in doc:
# TODO: 依据文本与图片顺序调整处理方式
text = page.get_text("")
resp += text + "\n"
img_list = page.get_images()
for img in img_list:
pix = fitz.Pixmap(doc, img[0])
img_array = np.frombuffer(pix.samples, dtype=np.uint8).reshape(pix.height, pix.width, -1)
result, _ = ocr(img_array)
if result:
ocr_result = [line[1] for line in result]
resp += "\n".join(ocr_result)
return resp
text = pdf2text(self.file_path)
from unstructured.partition.text import partition_text
return partition_text(text=text, **self.unstructured_kwargs)
if __name__ == "__main__":
loader = RapidOCRPDFLoader(file_path="../tests/samples/ocr_test.pdf")
docs = loader.load()
print(docs)