Langchain-Chatchat/webui.py

171 lines
6.3 KiB
Python
Raw Normal View History

import gradio as gr
import os
import shutil
2023-04-14 00:42:21 +08:00
from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
def get_file_list():
if not os.path.exists("content"):
return []
return [f for f in os.listdir("content")]
file_list = get_file_list()
2023-04-14 00:42:21 +08:00
embedding_model_dict_list = list(embedding_model_dict.keys())
2023-04-14 00:42:21 +08:00
llm_model_dict_list = list(llm_model_dict.keys())
local_doc_qa = LocalDocQA()
def upload_file(file):
if not os.path.exists("content"):
os.mkdir("content")
filename = os.path.basename(file.name)
2023-04-11 19:52:59 +08:00
shutil.move(file.name, "content/" + filename)
# file_list首位插入新上传的文件
file_list.insert(0, filename)
return gr.Dropdown.update(choices=file_list, value=filename)
2023-04-14 00:42:21 +08:00
def get_answer(query, vs_path, history):
resp, history = local_doc_qa.get_knowledge_based_answer(
query=query, vs_path=vs_path, chat_history=history)
return history, history
2023-04-14 22:55:51 +08:00
def update_status(history, status):
history = history + [[None, status]]
print(status)
return history
2023-04-11 19:52:59 +08:00
2023-04-14 00:42:21 +08:00
def init_model():
try:
local_doc_qa.init_cfg()
return """模型已成功加载,请选择文件后点击"加载文件"按钮"""
except:
return """模型未成功加载,请重新选择后点击"加载模型"按钮"""
def reinit_model(llm_model, embedding_model, llm_history_len, top_k):
2023-04-14 22:55:51 +08:00
try:
local_doc_qa.init_cfg(llm_model=llm_model,
embedding_model=embedding_model,
llm_history_len=llm_history_len,
top_k=top_k)
return """模型已成功重新加载,请选择文件后点击"加载文件"按钮"""
except:
return """模型未成功重新加载,请重新选择后点击"加载模型"按钮"""
2023-04-14 00:42:21 +08:00
2023-04-14 01:06:13 +08:00
def get_vector_store(filepath):
2023-04-14 22:55:51 +08:00
vs_path = local_doc_qa.init_knowledge_vector_store(["content/" + filepath])
if vs_path:
file_status = "文件已成功加载,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
print(file_status)
return vs_path, file_status
2023-04-14 01:06:13 +08:00
2023-04-14 22:55:51 +08:00
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
2023-04-14 22:55:51 +08:00
}"""
2023-04-14 22:55:51 +08:00
webui_title = """
# 🎉langchain-ChatGLM WebUI🎉
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
2023-04-14 22:55:51 +08:00
"""
init_message = """欢迎使用 langchain-ChatGLM Web UI开始提问前请依次如下 3 个步骤:
2023-04-14 00:42:21 +08:00
1. 选择语言模型Embedding 模型及相关参数后点击"重新加载模型"并等待加载完成提示
2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档"并等待加载完成提示
2023-04-14 22:55:51 +08:00
3. 输入要提交的问题后点击回车提交 """
model_status = init_model()
with gr.Blocks(css=block_css) as demo:
vs_path, history, file_status, model_status = gr.State(""), gr.State([]), gr.State(""), gr.State(model_status)
gr.Markdown(webui_title)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
2023-04-11 19:52:59 +08:00
elem_id="chat-box",
2023-04-14 22:55:51 +08:00
show_label=False).style(height=750)
2023-04-12 21:09:37 +08:00
query = gr.Textbox(show_label=False,
2023-04-14 00:42:21 +08:00
placeholder="请提问",
2023-04-12 21:09:37 +08:00
lines=1,
value="用200字总结一下"
).style(container=False)
2023-04-14 00:42:21 +08:00
with gr.Column(scale=1):
2023-04-14 00:42:21 +08:00
llm_model = gr.Radio(llm_model_dict_list,
label="LLM 模型",
2023-04-14 22:55:51 +08:00
value=LLM_MODEL,
2023-04-14 00:42:21 +08:00
interactive=True)
llm_history_len = gr.Slider(0,
10,
value=3,
step=1,
label="LLM history len",
interactive=True)
embedding_model = gr.Radio(embedding_model_dict_list,
label="Embedding 模型",
2023-04-14 22:55:51 +08:00
value=EMBEDDING_MODEL,
2023-04-14 00:42:21 +08:00
interactive=True)
top_k = gr.Slider(1,
20,
value=6,
step=1,
label="向量匹配 top k",
interactive=True)
load_model_button = gr.Button("重新加载模型")
# with gr.Column():
with gr.Tab("select"):
selectFile = gr.Dropdown(file_list,
label="content file",
interactive=True,
value=file_list[0] if len(file_list) > 0 else None)
with gr.Tab("upload"):
file = gr.File(label="content file",
file_types=['.txt', '.md', '.docx', '.pdf']
) # .style(height=100)
2023-04-14 22:55:51 +08:00
load_file_button = gr.Button("重新加载文件")
2023-04-14 00:42:21 +08:00
load_model_button.click(reinit_model,
show_progress=True,
2023-04-14 22:55:51 +08:00
inputs=[llm_model, embedding_model, llm_history_len, top_k],
outputs=model_status
).then(update_status, [chatbot, model_status], chatbot)
2023-04-14 00:42:21 +08:00
# 将上传的文件保存到content文件夹下,并更新下拉框
file.upload(upload_file,
inputs=file,
outputs=selectFile)
2023-04-14 22:55:51 +08:00
load_file_button.click(get_vector_store,
show_progress=True,
inputs=selectFile,
outputs=[vs_path, file_status],
).then(
update_status, [chatbot, file_status], chatbot
)
query.submit(get_answer,
[query, vs_path, chatbot],
[chatbot, history],
)
demo.queue(concurrency_count=3).launch(
server_name='0.0.0.0', share=False, inbrowser=False)