Langchain-Chatchat/server/model_workers/base.py

232 lines
9.3 KiB
Python
Raw Normal View History

from configs.model_config import LOG_PATH
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.model_worker import BaseModelWorker
import uuid
import json
import sys
from pydantic import BaseModel
import fastchat
import threading
from typing import Dict, List
# 恢复被fastchat覆盖的标准输出
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
class ApiModelOutMsg(BaseModel):
error_code: int = 0
text: str
class ApiModelWorker(BaseModelWorker):
BASE_URL: str
SUPPORT_MODELS: List
def __init__(
self,
model_names: List[str],
controller_addr: str,
worker_addr: str,
context_len: int = 2048,
**kwargs,
):
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8])
kwargs.setdefault("model_path", "")
kwargs.setdefault("limit_worker_concurrency", 5)
super().__init__(model_names=model_names,
controller_addr=controller_addr,
worker_addr=worker_addr,
**kwargs)
self.context_len = context_len
self.init_heart_beat()
def count_token(self, params):
# TODO需要完善
print("count token")
print(params)
prompt = params["prompt"]
return {"count": len(str(prompt)), "error_code": 0}
def generate_stream_gate(self, params):
self.call_ct += 1
def generate_gate(self, params):
for x in self.generate_stream_gate(params):
pass
return json.loads(x[:-1].decode())
def get_embeddings(self, params):
print("embedding")
print(params)
# workaround to make program exit with Ctrl+c
# it should be deleted after pr is merged by fastchat
def init_heart_beat(self):
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=fastchat.serve.model_worker.heart_beat_worker, args=(self,), daemon=True,
)
self.heart_beat_thread.start()
def prompt_collator(self,
content_user: str = None,
role_user:str = "user",
content_assistant: str = None,
role_assistant: str = "assistant",
meta_prompt:List[Dict[str,str]] = [{"role":"system","content":"你是一个AI工具"}],
use_meta_prompt:bool=False):
prompt = []
if use_meta_prompt:
prompt += meta_prompt
if content_user:
prompt_dict = {"role": role_user, "content":content_user}
prompt.append(prompt_dict)
if content_assistant:
prompt_dict = {"role": role_assistant, "content":content_assistant}
prompt.append(prompt_dict)
return prompt
def create_oneshot(self,
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs
):
response = self.zhipuai.model_api.invoke(
model = model,
prompt = message,
top_p = top_p,
temperature = temperature
)
if response["code"] == 200:
result = response["data"]["choices"][-1]["content"]
return json.dumps({"error_code": 0, "text": result}, ensure_ascii=False).encode() + b"\0"
else:
#TODO 确认openai的error code
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
return json.dumps({"error_code": response['code'],
"text": f"error occurred, error code:{response['code']},error msg:{response['msg']}"
},
ensure_ascii=False).encode() + b"\0"
def create_stream(self,
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs
):
response = self.zhipuai.model_api.sse_invoke(
model = model,
prompt = message,
top_p = top_p,
temperature = temperature,
incremental = True
)
for event in response.events():
if event.event == "add":
# yield event.data
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
elif event.event == "error" or event.event == "interrupted":
# return event.data
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
elif event.event == "finish":
# yield event.data
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
print(event.meta)
else:
print("Something get wrong with ZhipuAPILoader.create_chat_completion_stream")
print(event.data)
yield json.dumps({"error_code": 1, "text": event.data}, ensure_ascii=False).encode() + b"\0"
def create_chat_completion(self,
model: str = "chatglm_pro",
prompt:List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
top_p:float=0.7,
temperature:float=0.9,
stream:bool=False):
if stream:
return self.create_stream(model=model,
message=prompt,
top_p=top_p,
temperature=temperature)
else:
return self.create_oneshot(model=model,
message=prompt,
top_p=top_p,
temperature=temperature)
async def acreate_chat_completion(self,
prompt: List[Dict[str,str]]=[{"role":"system","content":"你是一个人工智能助手"},
{"role":"user","content":"你好。"}],
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs):
response = await self.zhipuai.model_api.async_invoke(
model = model,
prompt = prompt,
top_p = top_p,
temperature = temperature
)
if response["code"] == 200:
task_id = response['data']['task_id']
status = "PROCESSING"
while status != "SUCCESS":
# await asyncio.sleep(3) #
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
status = resp['data']['task_status']
return resp['data']['choices'][-1]['content']
else:
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
return
def create_completion(self,
prompt:str="你好",
model:str="chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
stream:bool=False,
**kwargs):
message = self.prompt_collator(content_user=prompt)
if stream:
return self.create_stream(model=model,
message=message,
top_p=top_p,
temperature=temperature)
else:
return self.create_oneshot(model=model,
message=message,
top_p=top_p,
temperature=temperature)
#? make it a sync function?
async def acreate_completion(self,
prompt:str="你好",
model:str = "chatglm_pro",
top_p:float=0.7,
temperature:float=0.9,
**kwargs):
message = self.prompt_collator(content_user=prompt)
response = self.zhipuai.model_api.async_invoke(
model = model,
prompt = message,
top_p = top_p,
temperature = temperature
)
if response["code"] == 200:
task_id = response['data']['task_id']
status = "PROCESSING"
while status != "SUCCESS":
# await asyncio.sleep(3) #
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
status = resp['data']['task_status']
return resp['data']['choices'][-1]['content']
else:
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
return