Langchain-Chatchat/webui_pages/knowledge_base/knowledge_base.py

244 lines
8.5 KiB
Python
Raw Normal View History

2023-08-01 14:47:38 +08:00
import streamlit as st
from webui_pages.utils import *
2023-08-08 23:58:44 +08:00
# import streamlit_antd_components as sac
from st_aggrid import AgGrid
from st_aggrid.grid_options_builder import GridOptionsBuilder
import pandas as pd
2023-08-08 23:58:44 +08:00
from server.knowledge_base.utils import get_file_path, list_kbs_from_folder, list_docs_from_folder
from server.knowledge_base.kb_service.base import KBServiceFactory
from server.db.repository.knowledge_base_repository import get_kb_detail
from server.db.repository.knowledge_file_repository import get_file_detail
# from streamlit_chatbox import *
from typing import Literal, Dict
SENTENCE_SIZE = 100
2023-08-01 14:47:38 +08:00
2023-08-08 23:58:44 +08:00
def get_kb_details(api: ApiRequest) -> pd.DataFrame:
kbs_in_folder = list_kbs_from_folder()
kbs_in_db = api.list_knowledge_bases()
result = {}
for kb in kbs_in_folder:
result[kb] = {
"kb_name": kb,
"vs_type": "",
"embed_model": "",
"file_count": 0,
"create_time": None,
"in_folder": True,
"in_db": False,
}
for kb in kbs_in_db:
kb_detail = get_kb_detail(kb)
if kb_detail:
kb_detail["in_db"] = True
if kb in result:
result[kb].update(kb_detail)
else:
kb_detail["in_folder"] = False
result[kb] = kb_detail
df = pd.DataFrame(result.values(), columns=[
"kb_name",
"vs_type",
"embed_model",
"file_count",
"create_time",
"in_folder",
"in_db",
])
2023-08-08 23:58:44 +08:00
df.insert(0, "No", range(1, len(df) + 1))
return df
def get_kb_doc_details(api: ApiRequest, kb: str) -> pd.DataFrame:
docs_in_folder = list_docs_from_folder(kb)
docs_in_db = api.list_kb_docs(kb)
result = {}
for doc in docs_in_folder:
result[doc] = {
"kb_name": kb,
"file_name": doc,
"file_ext": os.path.splitext(doc)[-1],
"file_version": 0,
"document_loader": "",
"text_splitter": "",
"create_time": None,
"in_folder": True,
"in_db": False,
}
for doc in docs_in_db:
doc_detail = get_file_detail(kb, doc)
if doc_detail:
doc_detail["in_db"] = True
if doc in result:
result[doc].update(doc_detail)
else:
doc_detail["in_folder"] = False
result[doc] = doc_detail
df = pd.DataFrame(result.values(), columns=[
"kb_name",
"file_name",
"file_ext",
"file_version",
"document_loader",
"text_splitter",
"create_time",
"in_folder",
"in_db",
])
2023-08-08 23:58:44 +08:00
df.insert(0, "No", range(1, len(df) + 1))
return df
def config_aggrid(
df: pd.DataFrame,
titles: Dict[str, str] = {},
selection_mode: Literal["single", "multiple", "disabled"] = "single",
use_checkbox: bool = False,
) -> GridOptionsBuilder:
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_column("No", width=50)
for k, v in titles.items():
gb.configure_column(k, v, maxWidth=100, wrapHeaderText=True)
2023-08-08 23:58:44 +08:00
gb.configure_selection(selection_mode, use_checkbox, pre_selected_rows=[0])
return gb
# kb_box = ChatBox(session_key="kb_messages")
2023-08-01 15:08:19 +08:00
def knowledge_base_page(api: ApiRequest):
api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=True)
2023-08-08 23:58:44 +08:00
kb_details = get_kb_details(api)
kb_list = list(kb_details.kb_name)
2023-08-08 23:58:44 +08:00
cols = st.columns([2, 1, 1])
new_kb_name = cols[0].text_input(
"新知识库名称",
placeholder="新知识库名称",
label_visibility="collapsed",
key="new_kb_name",
)
if cols[1].button("新建", disabled=not bool(new_kb_name)) and new_kb_name:
if new_kb_name in kb_list:
st.error(f"名为 {new_kb_name} 的知识库已经存在!")
else:
ret = api.create_knowledge_base(new_kb_name)
st.toast(ret["msg"])
st.experimental_rerun()
if cols[2].button("删除", disabled=not bool(new_kb_name)) and new_kb_name:
if new_kb_name in kb_list:
ret = api.delete_knowledge_base(new_kb_name)
st.toast(ret["msg"])
st.experimental_rerun()
else:
st.error(f"名为 {new_kb_name} 的知识库不存在!")
2023-08-08 23:58:44 +08:00
st.write("知识库:")
if kb_list:
2023-08-08 23:58:44 +08:00
gb = config_aggrid(
kb_details,
{
"kb_name": "知识库名称",
"vs_type": "知识库类型",
"embed_model": "嵌入模型",
"file_count": "文档数量",
"create_time": "创建时间",
"in_folder": "存在于文件夹",
"in_db": "存在于数据库",
}
)
kb_grid = AgGrid(kb_details, gb.build())
if kb_grid.selected_rows:
kb = kb_grid.selected_rows[0]["kb_name"]
2023-08-08 23:58:44 +08:00
with st.sidebar:
sentence_size = st.slider("文本入库分句长度限制", 1, 1000, SENTENCE_SIZE, disabled=True)
files = st.file_uploader("上传知识文件",
["docx", "txt", "md", "csv", "xlsx", "pdf"],
accept_multiple_files=True,
)
if st.button(
"添加文件到知识库",
help="请先上传文件,再点击添加",
use_container_width=True,
disabled=len(files)==0,
):
for f in files:
ret = api.upload_kb_doc(f, kb)
if ret["code"] == 200:
st.toast(ret["msg"], icon="")
else:
st.toast(ret["msg"], icon="")
st.session_state.files = []
2023-08-08 23:58:44 +08:00
if st.button(
"重建知识库",
help="无需上传文件通过其它方式将文档拷贝到对应知识库content目录下点击本按钮即可重建知识库。",
use_container_width=True,
disabled=True,
):
progress = st.progress(0.0, "")
for d in api.recreate_vector_store(kb):
progress.progress(d["finished"] / d["t]otal"], f"正在处理: {d['doc']}")
# 知识库详情
st.subheader(f"知识库 {kb} 详情")
doc_details = get_kb_doc_details(api, kb)
doc_details.drop(columns=["kb_name"], inplace=True)
2023-08-08 23:58:44 +08:00
gb = config_aggrid(
doc_details,
{
"file_name": "文档名称",
"file_ext": "文档类型",
"file_version": "文档版本",
"document_loader": "文档加载器",
"text_splitter": "分词器",
"create_time": "创建时间",
"in_folder": "存在于文件夹",
"in_db": "存在于数据库",
},
"multiple",
)
doc_grid = AgGrid(doc_details, gb.build())
cols = st.columns(3)
2023-08-08 23:58:44 +08:00
selected_rows = doc_grid.get("selected_rows", [])
cols = st.columns(4)
if selected_rows:
2023-08-08 23:58:44 +08:00
file_name = selected_rows[0]["file_name"]
file_path = get_file_path(kb, file_name)
with open(file_path, "rb") as fp:
cols[0].download_button("下载选中文档", fp, file_name=file_name)
else:
cols[0].download_button("下载选中文档", "", disabled=True)
if cols[1].button("入库", disabled=len(selected_rows)==0):
for row in selected_rows:
api.update_kb_doc(kb, row["file_name"])
st.experimental_rerun()
if cols[2].button("出库", disabled=len(selected_rows)==0):
for row in selected_rows:
api.delete_kb_doc(kb, row["file_name"])
st.experimental_rerun()
if cols[3].button("删除选中文档!", type="primary"):
for row in selected_rows:
ret = api.delete_kb_doc(kb, row["file_name"], True)
st.toast(ret["msg"])
st.experimental_rerun()
st.write("本文档包含以下知识条目:(待定内容)")