Langchain-Chatchat/webui_pages/knowledge_base/knowledge_base.py

196 lines
6.7 KiB
Python
Raw Normal View History

from pydoc import doc
2023-08-01 14:47:38 +08:00
import streamlit as st
from webui_pages.utils import *
from st_aggrid import AgGrid
from st_aggrid.grid_options_builder import GridOptionsBuilder
import pandas as pd
from server.knowledge_base.utils import get_file_path, LOADER_DICT
from server.knowledge_base.kb_service.base import get_kb_details, get_kb_doc_details
from typing import Literal, Dict, Tuple
SENTENCE_SIZE = 100
2023-08-01 14:47:38 +08:00
2023-08-08 23:58:44 +08:00
def config_aggrid(
2023-08-10 23:51:10 +08:00
df: pd.DataFrame,
columns: Dict[Tuple[str, str], Dict] = {},
selection_mode: Literal["single", "multiple", "disabled"] = "single",
use_checkbox: bool = False,
2023-08-08 23:58:44 +08:00
) -> GridOptionsBuilder:
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_column("No", width=40)
for (col, header), kw in columns.items():
gb.configure_column(col, header, wrapHeaderText=True, **kw)
gb.configure_selection(
selection_mode,
use_checkbox,
# pre_selected_rows=st.session_state.get("selected_rows", [0]),
)
2023-08-08 23:58:44 +08:00
return gb
2023-08-01 15:08:19 +08:00
def knowledge_base_page(api: ApiRequest):
2023-08-10 23:51:10 +08:00
# api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=True)
kb_list = get_kb_details()
cols = st.columns([3, 1, 1, 3])
2023-08-08 23:58:44 +08:00
new_kb_name = cols[0].text_input(
"新知识库名称",
placeholder="新知识库名称,不支持中文命名",
2023-08-08 23:58:44 +08:00
label_visibility="collapsed",
key="new_kb_name",
)
2023-08-10 23:51:10 +08:00
if cols[1].button(
"新建",
disabled=not bool(new_kb_name),
use_container_width=True,
) and new_kb_name:
if new_kb_name in kb_list:
st.error(f"名为 {new_kb_name} 的知识库已经存在!")
else:
ret = api.create_knowledge_base(new_kb_name)
st.toast(ret["msg"])
st.experimental_rerun()
2023-08-10 23:51:10 +08:00
if cols[2].button(
"删除",
disabled=not bool(new_kb_name),
use_container_width=True,
) and new_kb_name:
if new_kb_name in kb_list:
ret = api.delete_knowledge_base(new_kb_name)
st.toast(ret["msg"])
st.experimental_rerun()
else:
st.error(f"名为 {new_kb_name} 的知识库不存在!")
selected_kb = cols[3].selectbox(
"请选择知识库:",
kb_list,
format_func=lambda s: f"{s['kb_name']} ({s['vs_type']} @ {s['embed_model']})",
label_visibility="collapsed"
)
if selected_kb:
kb = selected_kb["kb_name"]
# 知识库详情
st.write(f"知识库 `{kb}` 详情:")
# st.info("请选择文件,点击按钮进行操作。")
doc_details = pd.DataFrame(get_kb_doc_details(kb))
doc_details.drop(columns=["kb_name"], inplace=True)
doc_details = doc_details[[
"No", "file_name", "document_loader", "text_splitter", "in_folder", "in_db",
]]
2023-08-08 23:58:44 +08:00
gb = config_aggrid(
doc_details,
2023-08-08 23:58:44 +08:00
{
("file_name", "文档名称"): {},
# ("file_ext", "文档类型"): {},
# ("file_version", "文档版本"): {},
("document_loader", "文档加载器"): {},
("text_splitter", "分词器"): {},
# ("create_time", "创建时间"): {},
2023-08-10 23:51:10 +08:00
("in_folder", "文件夹"): {},
("in_db", "数据库"): {},
},
"multiple",
2023-08-08 23:58:44 +08:00
)
doc_grid = AgGrid(
doc_details,
2023-08-10 23:51:10 +08:00
gb.build(),
columns_auto_size_mode="FIT_CONTENTS",
theme="alpine",
custom_css={
"#gridToolBar": {"display": "none"},
},
2023-08-10 23:51:10 +08:00
)
cols = st.columns(3)
selected_rows = doc_grid.get("selected_rows", [])
cols = st.columns(4)
if selected_rows:
file_name = selected_rows[0]["file_name"]
file_path = get_file_path(kb, file_name)
with open(file_path, "rb") as fp:
2023-08-10 23:51:10 +08:00
cols[0].download_button(
"下载选中文档",
fp,
file_name=file_name,
2023-08-10 23:51:10 +08:00
use_container_width=True,)
else:
cols[0].download_button(
"下载选中文档",
"",
disabled=True,
use_container_width=True,)
if cols[1].button(
"入库",
disabled=len(selected_rows) == 0,
use_container_width=True,
help="将文件分词并加载到向量库中",
):
for row in selected_rows:
api.update_kb_doc(kb, row["file_name"])
st.experimental_rerun()
if cols[2].button(
"出库",
disabled=len(selected_rows) == 0,
use_container_width=True,
help="将文件从向量库中删除,但不删除文件本身。"
):
for row in selected_rows:
api.delete_kb_doc(kb, row["file_name"])
st.experimental_rerun()
if cols[3].button(
"删除选中文档!",
type="primary",
use_container_width=True,
):
for row in selected_rows:
ret = api.delete_kb_doc(kb, row["file_name"], True)
st.toast(ret["msg"])
st.experimental_rerun()
2023-08-10 23:51:10 +08:00
st.divider()
# sentence_size = st.slider("文本入库分句长度限制", 1, 1000, SENTENCE_SIZE, disabled=True)
files = st.file_uploader("上传知识文件",
[i for ls in LOADER_DICT.values() for i in ls],
accept_multiple_files=True,
)
cols = st.columns([3, 1])
if cols[0].button(
"添加文件到知识库",
help="请先上传文件,再点击添加",
use_container_width=True,
disabled=len(files) == 0,
):
for f in files:
ret = api.upload_kb_doc(f, kb)
if ret["code"] == 200:
st.toast(ret["msg"], icon="")
else:
st.toast(ret["msg"], icon="")
st.session_state.files = []
# todo: freezed
if cols[1].button(
"重建知识库",
help="无需上传文件通过其它方式将文档拷贝到对应知识库content目录下点击本按钮即可重建知识库。",
use_container_width=True,
type="primary",
):
empty = st.empty()
empty.progress(0.0, "")
for d in api.recreate_vector_store(kb):
print(d)
empty.progress(d["finished"] / d["total"], f"正在处理: {d['doc']}")
empty.write("重建完毕")