Langchain-Chatchat/server/llm_api.py

66 lines
2.3 KiB
Python
Raw Normal View History

2023-07-27 23:22:07 +08:00
import subprocess
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import llm_model_dict, LLM_MODEL, LOG_PATH, logger
def execute_command(command):
process = subprocess.Popen(command, shell=True)
return process.pid
host_ip = "0.0.0.0"
2023-07-28 16:12:57 +08:00
port = 8887
# 1. llm_model_dict精简
2023-07-27 23:22:07 +08:00
2023-07-28 16:12:57 +08:00
# 2. 不同任务的日志还是分开;
2023-07-28 16:16:59 +08:00
# 3. 在model_config.py里定义args
2023-07-28 16:12:57 +08:00
# 4. 用logger.removeHandler把它添加的handler删掉添加我们自己的handler;
# 5. 用watchdog监控第二步的执行情况
# 6. requirements指定fastchat版本号。
print(llm_model_dict[LLM_MODEL])
2023-07-27 23:22:07 +08:00
model_path = llm_model_dict[LLM_MODEL]["local_model_path"]
if not model_path:
logger.error("local_model_path 不能为空")
else:
# 启动任务
2023-07-28 16:12:57 +08:00
command1 = f'nohup python -m fastchat.serve.controller >> {LOG_PATH}/controller_log.txt 2>&1 &'
2023-07-27 23:22:07 +08:00
process1 = execute_command(command1)
logger.info(f"已执行 {command1}")
logger.info(f"Process 1 started with PID: {process1}")
2023-07-28 16:12:57 +08:00
command2 = f'nohup python -m fastchat.serve.model_worker --model-path "{model_path}" --device cuda >> {LOG_PATH}/worker_log.txt 2>&1 &'
2023-07-27 23:22:07 +08:00
process2 = execute_command(command2)
logger.info(f"已执行 {command2}")
logger.info(f"Process 2 started with PID: {process2}")
2023-07-28 16:12:57 +08:00
command3 = f'nohup python -m fastchat.serve.openai_api_server --host "{host_ip}" --port {port} >> {LOG_PATH}/api_log.txt 2>&1 &'
2023-07-27 23:22:07 +08:00
process3 = execute_command(command3)
logger.info(f"已执行 {command3}")
logger.info(f"Process 3 started with PID: {process3}")
2023-07-28 16:12:57 +08:00
# TODO: model_worker.log 与 controller.log 存储位置未指定为 LOG_PATH --> hzg0601model_worker.py,controller.py自行指定的文件写入路径
# TODO(hzg0601): -->而且是写死的如果想修改路径必须修改fastchat的代码
2023-07-27 23:22:07 +08:00
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
# 服务启动后接口调用示例:
# import openai
# openai.api_key = "EMPTY" # Not support yet
# openai.api_base = "http://0.0.0.0:8000/v1"
# model = "chatglm2-6b"
# # create a chat completion
# completion = openai.ChatCompletion.create(
# model=model,
# messages=[{"role": "user", "content": "Hello! What is your name?"}]
# )
# # print the completion
# print(completion.choices[0].message.content)