103 lines
4.2 KiB
Python
103 lines
4.2 KiB
Python
|
|
from langchain.utilities import BingSearchAPIWrapper, DuckDuckGoSearchAPIWrapper
|
||
|
|
from configs.model_config import BING_SEARCH_URL, BING_SUBSCRIPTION_KEY
|
||
|
|
from fastapi import Body
|
||
|
|
from fastapi.responses import StreamingResponse
|
||
|
|
from configs.model_config import (llm_model_dict, LLM_MODEL, SEARCH_ENGINE_TOP_K, PROMPT_TEMPLATE)
|
||
|
|
from server.chat.utils import wrap_done
|
||
|
|
from server.utils import BaseResponse
|
||
|
|
from langchain.chat_models import ChatOpenAI
|
||
|
|
from langchain import LLMChain
|
||
|
|
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||
|
|
from typing import AsyncIterable
|
||
|
|
import asyncio
|
||
|
|
from langchain.prompts import PromptTemplate
|
||
|
|
from langchain.docstore.document import Document
|
||
|
|
|
||
|
|
|
||
|
|
def bing_search(text, result_len=SEARCH_ENGINE_TOP_K):
|
||
|
|
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
|
||
|
|
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
|
||
|
|
"title": "env info is not found",
|
||
|
|
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
|
||
|
|
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
|
||
|
|
bing_search_url=BING_SEARCH_URL)
|
||
|
|
return search.results(text, result_len)
|
||
|
|
|
||
|
|
|
||
|
|
def duckduckgo_search(text, result_len=SEARCH_ENGINE_TOP_K):
|
||
|
|
search = DuckDuckGoSearchAPIWrapper()
|
||
|
|
return search.results(text, result_len)
|
||
|
|
|
||
|
|
|
||
|
|
SEARCH_ENGINES = {"bing": bing_search,
|
||
|
|
"duckduckgo": duckduckgo_search,
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
def search_result2docs(search_results):
|
||
|
|
docs = []
|
||
|
|
for result in search_results:
|
||
|
|
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
|
||
|
|
metadata={"source": result["link"] if "link" in result.keys() else "",
|
||
|
|
"filename": result["title"] if "title" in result.keys() else ""})
|
||
|
|
docs.append(doc)
|
||
|
|
return docs
|
||
|
|
|
||
|
|
|
||
|
|
def lookup_search_engine(
|
||
|
|
query: str,
|
||
|
|
search_engine_name: str,
|
||
|
|
top_k: int = SEARCH_ENGINE_TOP_K,
|
||
|
|
):
|
||
|
|
results = SEARCH_ENGINES[search_engine_name](query, result_len=top_k)
|
||
|
|
docs = search_result2docs(results)
|
||
|
|
return docs
|
||
|
|
|
||
|
|
|
||
|
|
def search_engine_chat(query: str = Body(..., description="用户输入", example="你好"),
|
||
|
|
search_engine_name: str = Body(..., description="搜索引擎名称", example="duckduckgo"),
|
||
|
|
top_k: int = Body(SEARCH_ENGINE_TOP_K, description="检索结果数量"),
|
||
|
|
):
|
||
|
|
if search_engine_name not in SEARCH_ENGINES.keys():
|
||
|
|
return BaseResponse(code=404, msg=f"未支持搜索引擎 {search_engine_name}")
|
||
|
|
|
||
|
|
async def search_engine_chat_iterator(query: str,
|
||
|
|
search_engine_name: str,
|
||
|
|
top_k: int,
|
||
|
|
) -> AsyncIterable[str]:
|
||
|
|
callback = AsyncIteratorCallbackHandler()
|
||
|
|
model = ChatOpenAI(
|
||
|
|
streaming=True,
|
||
|
|
verbose=True,
|
||
|
|
callbacks=[callback],
|
||
|
|
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||
|
|
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||
|
|
model_name=LLM_MODEL
|
||
|
|
)
|
||
|
|
|
||
|
|
docs = lookup_search_engine(query, search_engine_name, top_k)
|
||
|
|
context = "\n".join([doc.page_content for doc in docs])
|
||
|
|
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
|
||
|
|
|
||
|
|
chain = LLMChain(prompt=prompt, llm=model)
|
||
|
|
|
||
|
|
# Begin a task that runs in the background.
|
||
|
|
task = asyncio.create_task(wrap_done(
|
||
|
|
chain.acall({"context": context, "question": query}),
|
||
|
|
callback.done),
|
||
|
|
)
|
||
|
|
|
||
|
|
source_documents = [
|
||
|
|
f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n"""
|
||
|
|
for inum, doc in enumerate(docs)
|
||
|
|
]
|
||
|
|
|
||
|
|
async for token in callback.aiter():
|
||
|
|
# Use server-sent-events to stream the response
|
||
|
|
yield {"answer": token,
|
||
|
|
"docs": source_documents}
|
||
|
|
await task
|
||
|
|
|
||
|
|
return StreamingResponse(search_engine_chat_iterator(query, search_engine_name, top_k),
|
||
|
|
media_type="text/event-stream")
|