Langchain-Chatchat/webui.py

187 lines
7.1 KiB
Python
Raw Normal View History

import gradio as gr
import os
import shutil
2023-04-14 00:42:21 +08:00
from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 6
# LLM input history length
LLM_HISTORY_LEN = 3
def get_file_list():
if not os.path.exists("content"):
return []
return [f for f in os.listdir("content")]
file_list = get_file_list()
2023-04-14 00:42:21 +08:00
embedding_model_dict_list = list(embedding_model_dict.keys())
2023-04-14 00:42:21 +08:00
llm_model_dict_list = list(llm_model_dict.keys())
local_doc_qa = LocalDocQA()
def upload_file(file):
if not os.path.exists("content"):
os.mkdir("content")
filename = os.path.basename(file.name)
2023-04-11 19:52:59 +08:00
shutil.move(file.name, "content/" + filename)
# file_list首位插入新上传的文件
file_list.insert(0, filename)
return gr.Dropdown.update(choices=file_list, value=filename)
2023-04-14 00:42:21 +08:00
def get_answer(query, vs_path, history):
2023-04-14 23:30:37 +08:00
if vs_path:
resp, history = local_doc_qa.get_knowledge_based_answer(
query=query, vs_path=vs_path, chat_history=history)
else:
history = history + [[None, "请先加载文件后,再进行提问。"]]
2023-04-14 23:42:28 +08:00
return history, ""
2023-04-14 22:55:51 +08:00
def update_status(history, status):
history = history + [[None, status]]
print(status)
return history
2023-04-11 19:52:59 +08:00
2023-04-14 00:42:21 +08:00
def init_model():
try:
local_doc_qa.init_cfg()
return """模型已成功加载,请选择文件后点击"加载文件"按钮"""
except:
return """模型未成功加载,请重新选择后点击"加载模型"按钮"""
2023-04-15 14:43:12 +08:00
def reinit_model(llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, history):
2023-04-14 22:55:51 +08:00
try:
local_doc_qa.init_cfg(llm_model=llm_model,
embedding_model=embedding_model,
llm_history_len=llm_history_len,
2023-04-15 14:43:12 +08:00
use_ptuning_v2=use_ptuning_v2,
2023-04-14 22:55:51 +08:00
top_k=top_k)
2023-04-14 23:30:37 +08:00
model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮"""
2023-04-14 22:55:51 +08:00
except:
2023-04-14 23:30:37 +08:00
model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮"""
return history + [[None, model_status]]
2023-04-14 22:55:51 +08:00
2023-04-14 00:42:21 +08:00
2023-04-14 23:30:37 +08:00
def get_vector_store(filepath, history):
if local_doc_qa.llm and local_doc_qa.llm:
vs_path = local_doc_qa.init_knowledge_vector_store(["content/" + filepath])
if vs_path:
file_status = "文件已成功加载,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
2023-04-14 22:55:51 +08:00
else:
2023-04-14 23:30:37 +08:00
file_status = "模型未完成加载,请先在加载模型后再导入文件"
vs_path = None
return vs_path, history + [[None, file_status]]
2023-04-14 01:06:13 +08:00
2023-04-14 22:55:51 +08:00
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
2023-04-14 22:55:51 +08:00
}"""
2023-04-14 22:55:51 +08:00
webui_title = """
# 🎉langchain-ChatGLM WebUI🎉
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
2023-04-14 22:55:51 +08:00
"""
init_message = """欢迎使用 langchain-ChatGLM Web UI开始提问前请依次如下 3 个步骤:
2023-04-15 14:43:12 +08:00
1. 选择语言模型Embedding 模型及相关参数如果使用ptuning-v2方式微调过模型将PrefixEncoder模型放在ptuning-v2文件夹里并勾选相关选项然后点击"重新加载模型"并等待加载完成提示
2023-04-14 00:42:21 +08:00
2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档"并等待加载完成提示
2023-04-14 22:55:51 +08:00
3. 输入要提交的问题后点击回车提交 """
model_status = init_model()
with gr.Blocks(css=block_css) as demo:
2023-04-14 23:30:37 +08:00
vs_path, file_status, model_status = gr.State(""), gr.State(""), gr.State(model_status)
2023-04-14 22:55:51 +08:00
gr.Markdown(webui_title)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
2023-04-11 19:52:59 +08:00
elem_id="chat-box",
2023-04-14 22:55:51 +08:00
show_label=False).style(height=750)
2023-04-12 21:09:37 +08:00
query = gr.Textbox(show_label=False,
2023-04-14 23:30:37 +08:00
placeholder="请输入提问内容,按回车进行提交",
2023-04-12 21:09:37 +08:00
).style(container=False)
2023-04-14 00:42:21 +08:00
with gr.Column(scale=1):
2023-04-14 00:42:21 +08:00
llm_model = gr.Radio(llm_model_dict_list,
label="LLM 模型",
2023-04-14 22:55:51 +08:00
value=LLM_MODEL,
2023-04-14 00:42:21 +08:00
interactive=True)
llm_history_len = gr.Slider(0,
10,
value=LLM_HISTORY_LEN,
2023-04-14 00:42:21 +08:00
step=1,
label="LLM history len",
interactive=True)
2023-04-15 14:43:12 +08:00
use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2,
label="使用p-tuning-v2微调过的模型",
interactive=True)
2023-04-14 00:42:21 +08:00
embedding_model = gr.Radio(embedding_model_dict_list,
label="Embedding 模型",
2023-04-14 22:55:51 +08:00
value=EMBEDDING_MODEL,
2023-04-14 00:42:21 +08:00
interactive=True)
top_k = gr.Slider(1,
20,
value=VECTOR_SEARCH_TOP_K,
2023-04-14 00:42:21 +08:00
step=1,
label="向量匹配 top k",
interactive=True)
load_model_button = gr.Button("重新加载模型")
# with gr.Column():
with gr.Tab("select"):
selectFile = gr.Dropdown(file_list,
label="content file",
interactive=True,
value=file_list[0] if len(file_list) > 0 else None)
with gr.Tab("upload"):
file = gr.File(label="content file",
file_types=['.txt', '.md', '.docx', '.pdf']
) # .style(height=100)
2023-04-14 23:30:37 +08:00
load_file_button = gr.Button("加载文件")
2023-04-14 00:42:21 +08:00
load_model_button.click(reinit_model,
show_progress=True,
2023-04-15 14:43:12 +08:00
inputs=[llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, chatbot],
2023-04-14 23:30:37 +08:00
outputs=chatbot
)
2023-04-14 00:42:21 +08:00
# 将上传的文件保存到content文件夹下,并更新下拉框
file.upload(upload_file,
inputs=file,
outputs=selectFile)
2023-04-14 22:55:51 +08:00
load_file_button.click(get_vector_store,
show_progress=True,
2023-04-14 23:30:37 +08:00
inputs=[selectFile, chatbot],
outputs=[vs_path, chatbot],
)
2023-04-14 22:55:51 +08:00
query.submit(get_answer,
[query, vs_path, chatbot],
2023-04-14 23:42:28 +08:00
[chatbot, query],
2023-04-14 22:55:51 +08:00
)
demo.queue(concurrency_count=3
).launch(server_name='0.0.0.0',
server_port=7860,
show_api=False,
share=False,
inbrowser=False)