Langchain-Chatchat/server/chat/knowledge_base_chat.py

102 lines
5.0 KiB
Python
Raw Normal View History

from fastapi import Body, Request
2023-07-27 23:22:07 +08:00
from fastapi.responses import StreamingResponse
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
2023-07-27 23:22:07 +08:00
from server.chat.utils import wrap_done
from server.utils import BaseResponse
2023-07-27 23:22:07 +08:00
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable, List, Optional
2023-07-27 23:22:07 +08:00
import asyncio
2023-08-08 23:54:51 +08:00
from langchain.prompts.chat import ChatPromptTemplate
from server.chat.utils import History
from server.knowledge_base.kb_service.base import KBService, KBServiceFactory
import json
2023-08-14 10:35:47 +08:00
import os
from urllib.parse import urlencode
from server.knowledge_base.kb_doc_api import search_docs
2023-07-27 23:22:07 +08:00
def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
history: List[History] = Body([],
2023-08-10 21:26:05 +08:00
description="历史对话",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant",
"content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
request: Request = None,
2023-07-27 23:22:07 +08:00
):
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
history = [History.from_data(h) for h in history]
2023-08-09 22:57:36 +08:00
2023-07-27 23:22:07 +08:00
async def knowledge_base_chat_iterator(query: str,
kb: KBService,
top_k: int,
2023-08-08 23:54:51 +08:00
history: Optional[List[History]],
2023-07-27 23:22:07 +08:00
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL,
openai_proxy=llm_model_dict[LLM_MODEL].get("openai_proxy")
2023-07-27 23:22:07 +08:00
)
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
2023-07-27 23:22:07 +08:00
context = "\n".join([doc.page_content for doc in docs])
input_msg = History(role="user", content=PROMPT_TEMPLATE).to_msg_template(False)
2023-08-08 23:54:51 +08:00
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
2023-08-08 23:54:51 +08:00
chain = LLMChain(prompt=chat_prompt, llm=model)
2023-07-27 23:22:07 +08:00
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
source_documents = []
for inum, doc in enumerate(docs):
filename = os.path.split(doc.metadata["source"])[-1]
if local_doc_url:
url = "file://" + doc.metadata["source"]
else:
parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name":filename})
url = f"{request.base_url}knowledge_base/download_doc?" + parameters
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
source_documents.append(text)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps({"answer": token,
2023-08-10 21:26:05 +08:00
"docs": source_documents},
ensure_ascii=False)
else:
answer = ""
async for token in callback.aiter():
answer += token
2023-08-14 10:35:47 +08:00
yield json.dumps({"answer": answer,
2023-08-10 21:26:05 +08:00
"docs": source_documents},
ensure_ascii=False)
2023-07-27 23:22:07 +08:00
await task
2023-08-08 23:54:51 +08:00
return StreamingResponse(knowledge_base_chat_iterator(query, kb, top_k, history),
media_type="text/event-stream")