Langchain-Chatchat/webui.py

152 lines
6.2 KiB
Python
Raw Normal View History

import gradio as gr
import os
import shutil
2023-04-13 23:01:52 +08:00
import cli_demo as kb
def get_file_list():
if not os.path.exists("content"):
return []
return [f for f in os.listdir("content")]
file_list = get_file_list()
embedding_model_dict_list = list(kb.embedding_model_dict.keys())
llm_model_dict_list = list(kb.llm_model_dict.keys())
def upload_file(file):
if not os.path.exists("content"):
os.mkdir("content")
filename = os.path.basename(file.name)
2023-04-11 19:52:59 +08:00
shutil.move(file.name, "content/" + filename)
# file_list首位插入新上传的文件
file_list.insert(0, filename)
return gr.Dropdown.update(choices=file_list, value=filename)
2023-04-11 19:52:59 +08:00
def get_answer(query, vector_store, history):
resp, history = kb.get_knowledge_based_answer(
2023-04-11 19:52:59 +08:00
query=query, vector_store=vector_store, chat_history=history)
return history, history
2023-04-11 19:52:59 +08:00
def get_model_status(history):
return history + [[None, "模型已完成加载,请选择要加载的文档"]]
def get_file_status(history):
return history + [[None, "文档已完成加载,请开始提问"]]
with gr.Blocks(css="""
.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}
""") as demo:
gr.Markdown(
f"""
# 🎉langchain-ChatGLM WebUI🎉
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
""")
with gr.Row():
with gr.Column(scale=2):
2023-04-11 19:52:59 +08:00
chatbot = gr.Chatbot([[None, """欢迎使用 langchain-ChatGLM Web UI开始提问前请依次如下 3 个步骤:
1. 选择语言模型Embedding 模型及相关参数后点击"step.1: setting"并等待加载完成提示
2. 上传或选择已有文件作为本地知识文档输入后点击"step.2 loading"并等待加载完成提示
3. 输入要提交的问题后点击"step.3 asking" """]],
elem_id="chat-box",
show_label=False).style(height=600)
with gr.Column(scale=1):
with gr.Column():
2023-04-12 21:09:37 +08:00
llm_model = gr.Radio(llm_model_dict_list,
label="llm model",
value="chatglm-6b",
interactive=True)
LLM_HISTORY_LEN = gr.Slider(0,
2023-04-12 21:09:37 +08:00
10,
value=3,
step=1,
label="LLM history len",
interactive=True)
embedding_model = gr.Radio(embedding_model_dict_list,
label="embedding model",
value="text2vec",
interactive=True)
VECTOR_SEARCH_TOP_K = gr.Slider(1,
20,
value=6,
step=1,
label="vector search top k",
interactive=True)
load_model_button = gr.Button("step.1setting")
load_model_button.click(lambda *args:
kb.init_cfg(args[0], args[1], args[2], args[3]),
show_progress=True,
api_name="init_cfg",
inputs=[llm_model, embedding_model, LLM_HISTORY_LEN,VECTOR_SEARCH_TOP_K]
2023-04-11 19:52:59 +08:00
).then(
get_model_status, chatbot, chatbot
)
with gr.Column():
with gr.Tab("select"):
2023-04-12 21:09:37 +08:00
selectFile = gr.Dropdown(file_list,
label="content file",
interactive=True,
value=file_list[0] if len(file_list) > 0 else None)
with gr.Tab("upload"):
2023-04-12 21:09:37 +08:00
file = gr.File(label="content file",
2023-04-13 23:01:52 +08:00
file_types=['.txt', '.md', '.docx', '.pdf']
2023-04-12 21:09:37 +08:00
).style(height=100)
# 将上传的文件保存到content文件夹下,并更新下拉框
2023-04-12 21:09:37 +08:00
file.upload(upload_file,
inputs=file,
outputs=selectFile)
history = gr.State([])
vector_store = gr.State()
load_button = gr.Button("step.2loading")
load_button.click(lambda fileName:
kb.init_knowledge_vector_store(
2023-04-11 19:52:59 +08:00
"content/" + fileName),
show_progress=True,
api_name="init_knowledge_vector_store",
2023-04-12 21:09:37 +08:00
inputs=selectFile,
outputs=vector_store
).then(
get_file_status,
chatbot,
chatbot,
show_progress=True,
2023-04-11 19:52:59 +08:00
)
with gr.Row():
with gr.Column(scale=2):
2023-04-12 21:09:37 +08:00
query = gr.Textbox(show_label=False,
placeholder="Prompts",
lines=1,
value="用200字总结一下"
).style(container=False)
with gr.Column(scale=1):
2023-04-12 21:09:37 +08:00
generate_button = gr.Button("step.3asking",
elem_classes="importantButton")
generate_button.click(get_answer,
[query, vector_store, chatbot],
[chatbot, history],
api_name="get_knowledge_based_answer"
)
demo.queue(concurrency_count=3).launch(
server_name='0.0.0.0', share=False, inbrowser=False)