Langchain-Chatchat/server/chat/search_engine_chat.py

200 lines
9.3 KiB
Python
Raw Normal View History

from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
from configs import (BING_SEARCH_URL, BING_SUBSCRIPTION_KEY, METAPHOR_API_KEY,
LLM_MODEL, SEARCH_ENGINE_TOP_K, TEMPERATURE,
TEXT_SPLITTER_NAME, OVERLAP_SIZE)
from fastapi import Body
from fastapi.responses import StreamingResponse
from fastapi.concurrency import run_in_threadpool
from server.utils import wrap_done, get_ChatOpenAI
from server.utils import BaseResponse, get_prompt_template
from langchain.chains import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
2023-08-08 23:54:51 +08:00
from langchain.prompts.chat import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from typing import List, Optional, Dict
2023-08-08 23:54:51 +08:00
from server.chat.utils import History
from langchain.docstore.document import Document
import json
from strsimpy.normalized_levenshtein import NormalizedLevenshtein
from markdownify import markdownify
def bing_search(text, result_len=SEARCH_ENGINE_TOP_K, **kwargs):
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
"title": "env info is not found",
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
bing_search_url=BING_SEARCH_URL)
return search.results(text, result_len)
def duckduckgo_search(text, result_len=SEARCH_ENGINE_TOP_K, **kwargs):
search = DuckDuckGoSearchAPIWrapper()
return search.results(text, result_len)
def metaphor_search(
text: str,
result_len: int = SEARCH_ENGINE_TOP_K,
split_result: bool = False,
chunk_size: int = 500,
chunk_overlap: int = OVERLAP_SIZE,
) -> List[Dict]:
from metaphor_python import Metaphor
if not METAPHOR_API_KEY:
return []
client = Metaphor(METAPHOR_API_KEY)
search = client.search(text, num_results=result_len, use_autoprompt=True)
contents = search.get_contents().contents
for x in contents:
x.extract = markdownify(x.extract)
# metaphor 返回的内容都是长文本,需要分词再检索
if split_result:
docs = [Document(page_content=x.extract,
metadata={"link": x.url, "title": x.title})
for x in contents]
text_splitter = RecursiveCharacterTextSplitter(["\n\n", "\n", ".", " "],
chunk_size=chunk_size,
chunk_overlap=chunk_overlap)
splitted_docs = text_splitter.split_documents(docs)
# 将切分好的文档放入临时向量库重新筛选出TOP_K个文档
if len(splitted_docs) > result_len:
normal = NormalizedLevenshtein()
for x in splitted_docs:
x.metadata["score"] = normal.similarity(text, x.page_content)
splitted_docs.sort(key=lambda x: x.metadata["score"], reverse=True)
splitted_docs = splitted_docs[:result_len]
docs = [{"snippet": x.page_content,
"link": x.metadata["link"],
"title": x.metadata["title"]}
for x in splitted_docs]
else:
docs = [{"snippet": x.extract,
"link": x.url,
"title": x.title}
for x in contents]
return docs
SEARCH_ENGINES = {"bing": bing_search,
"duckduckgo": duckduckgo_search,
"metaphor": metaphor_search,
}
def search_result2docs(search_results):
docs = []
for result in search_results:
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
metadata={"source": result["link"] if "link" in result.keys() else "",
"filename": result["title"] if "title" in result.keys() else ""})
docs.append(doc)
return docs
async def lookup_search_engine(
query: str,
search_engine_name: str,
top_k: int = SEARCH_ENGINE_TOP_K,
split_result: bool = False,
):
search_engine = SEARCH_ENGINES[search_engine_name]
results = await run_in_threadpool(search_engine, query, result_len=top_k, split_result=split_result)
docs = search_result2docs(results)
return docs
async def search_engine_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
search_engine_name: str = Body(..., description="搜索引擎名称", examples=["duckduckgo"]),
top_k: int = Body(SEARCH_ENGINE_TOP_K, description="检索结果数量"),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant",
"content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
prompt_name: str = Body("default",description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
split_result: bool = Body(False, description="是否对搜索结果进行拆分主要用于metaphor搜索引擎")
):
if search_engine_name not in SEARCH_ENGINES.keys():
return BaseResponse(code=404, msg=f"未支持搜索引擎 {search_engine_name}")
if search_engine_name == "bing" and not BING_SUBSCRIPTION_KEY:
return BaseResponse(code=404, msg=f"要使用Bing搜索引擎需要设置 `BING_SUBSCRIPTION_KEY`")
history = [History.from_data(h) for h in history]
async def search_engine_chat_iterator(query: str,
search_engine_name: str,
top_k: int,
2023-08-08 23:54:51 +08:00
history: Optional[List[History]],
model_name: str = LLM_MODEL,
prompt_name: str = prompt_name,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
)
docs = await lookup_search_engine(query, search_engine_name, top_k, split_result=split_result)
context = "\n".join([doc.page_content for doc in docs])
prompt_template = get_prompt_template("search_engine_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
2023-08-08 23:54:51 +08:00
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
2023-08-08 23:54:51 +08:00
chain = LLMChain(prompt=chat_prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
source_documents = [
f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n"""
for inum, doc in enumerate(docs)
]
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps({"answer": token}, ensure_ascii=False)
yield json.dumps({"docs": source_documents}, ensure_ascii=False)
else:
answer = ""
async for token in callback.aiter():
answer += token
2023-08-24 17:25:54 +08:00
yield json.dumps({"answer": answer,
2023-08-09 22:57:36 +08:00
"docs": source_documents},
ensure_ascii=False)
await task
return StreamingResponse(search_engine_chat_iterator(query=query,
search_engine_name=search_engine_name,
top_k=top_k,
history=history,
model_name=model_name,
prompt_name=prompt_name),
media_type="text/event-stream")