Langchain-Chatchat/server/model_workers/qianfan.py

195 lines
7.1 KiB
Python
Raw Normal View History

import sys
from fastchat.conversation import Conversation
from server.model_workers.base import *
from fastchat import conversation as conv
import sys
from server.model_workers.base import ApiEmbeddingsParams
from typing import List, Literal, Dict
# MODEL_VERSIONS = {
# "ernie-bot": "completions",
# "ernie-bot-turbo": "eb-instant",
# "bloomz-7b": "bloomz_7b1",
# "qianfan-bloomz-7b-c": "qianfan_bloomz_7b_compressed",
# "llama2-7b-chat": "llama_2_7b",
# "llama2-13b-chat": "llama_2_13b",
# "llama2-70b-chat": "llama_2_70b",
# "qianfan-llama2-ch-7b": "qianfan_chinese_llama_2_7b",
# "chatglm2-6b-32k": "chatglm2_6b_32k",
# "aquilachat-7b": "aquilachat_7b",
# # "linly-llama2-ch-7b": "", # 暂未发布
# # "linly-llama2-ch-13b": "", # 暂未发布
# # "chatglm2-6b": "", # 暂未发布
# # "chatglm2-6b-int4": "", # 暂未发布
# # "falcon-7b": "", # 暂未发布
# # "falcon-180b-chat": "", # 暂未发布
# # "falcon-40b": "", # 暂未发布
# # "rwkv4-world": "", # 暂未发布
# # "rwkv5-world": "", # 暂未发布
# # "rwkv4-pile-14b": "", # 暂未发布
# # "rwkv4-raven-14b": "", # 暂未发布
# # "open-llama-7b": "", # 暂未发布
# # "dolly-12b": "", # 暂未发布
# # "mpt-7b-instruct": "", # 暂未发布
# # "mpt-30b-instruct": "", # 暂未发布
# # "OA-Pythia-12B-SFT-4": "", # 暂未发布
# # "xverse-13b": "", # 暂未发布
# # # 以下为企业测试,需要单独申请
# # "flan-ul2": "",
# # "Cerebras-GPT-6.7B": ""
# # "Pythia-6.9B": ""
# }
# @cached(TTLCache(1, 1800)) # 经过测试缓存的token可以使用目前每30分钟刷新一次
# def get_baidu_access_token(api_key: str, secret_key: str) -> str:
# """
# 使用 AKSK 生成鉴权签名Access Token
# :return: access_token或是None(如果错误)
# """
# url = "https://aip.baidubce.com/oauth/2.0/token"
# params = {"grant_type": "client_credentials", "client_id": api_key, "client_secret": secret_key}
# try:
# with get_httpx_client() as client:
# return client.get(url, params=params).json().get("access_token")
# except Exception as e:
# print(f"failed to get token from baidu: {e}")
class QianFanWorker(ApiModelWorker):
"""
百度千帆
"""
DEFAULT_EMBED_MODEL = "bge-large-zh"
def __init__(
self,
*,
version: Literal["ernie-bot", "ernie-bot-turbo"] = "ernie-bot",
model_names: List[str] = ["qianfan-api"],
controller_addr: str = None,
worker_addr: str = None,
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 16384)
super().__init__(**kwargs)
self.version = version
def do_chat(self, params: ApiChatParams) -> Dict:
params.load_config(self.model_names[0])
import qianfan
comp = qianfan.ChatCompletion(model=params.version,
endpoint=params.version_url,
ak=params.api_key,
sk=params.secret_key,)
text = ""
for resp in comp.do(messages=params.messages,
temperature=params.temperature,
top_p=params.top_p,
stream=True):
if resp.code == 200:
if chunk := resp.body.get("result"):
text += chunk
yield {
"error_code": 0,
"text": text
}
else:
yield {
"error_code": resp.code,
"text": str(resp.body),
}
# BASE_URL = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat'\
# '/{model_version}?access_token={access_token}'
# access_token = get_baidu_access_token(params.api_key, params.secret_key)
# if not access_token:
# yield {
# "error_code": 403,
# "text": f"failed to get access token. have you set the correct api_key and secret key?",
# }
# url = BASE_URL.format(
# model_version=params.version_url or MODEL_VERSIONS[params.version],
# access_token=access_token,
# )
# payload = {
# "messages": params.messages,
# "temperature": params.temperature,
# "stream": True
# }
# headers = {
# 'Content-Type': 'application/json',
# 'Accept': 'application/json',
# }
# text = ""
# with get_httpx_client() as client:
# with client.stream("POST", url, headers=headers, json=payload) as response:
# for line in response.iter_lines():
# if not line.strip():
# continue
# if line.startswith("data: "):
# line = line[6:]
# resp = json.loads(line)
# if "result" in resp.keys():
# text += resp["result"]
# yield {
# "error_code": 0,
# "text": text
# }
# else:
# yield {
# "error_code": resp["error_code"],
# "text": resp["error_msg"]
# }
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
import qianfan
params.load_config(self.model_names[0])
embed = qianfan.Embedding(ak=params.api_key, sk=params.secret_key)
resp = embed.do(texts = params.texts, model=params.embed_model or self.DEFAULT_EMBED_MODEL)
if resp.code == 200:
embeddings = [x.embedding for x in resp.body.get("data", [])]
return {"code": 200, "embeddings": embeddings}
else:
return {"code": resp.code, "msg": str(resp.body)}
# TODO: qianfan支持续写模型
def get_embeddings(self, params):
# TODO: 支持embeddings
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
# TODO: 确认模板是否需要修改
return conv.Conversation(
name=self.model_names[0],
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
messages=[],
roles=["user", "assistant"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = QianFanWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21004"
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21004)