Langchain-Chatchat/server/chat/chat.py

84 lines
4.0 KiB
Python
Raw Normal View History

2023-07-27 23:22:07 +08:00
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs import LLM_MODEL, TEMPERATURE, SAVE_CHAT_HISTORY
from server.utils import wrap_done, get_ChatOpenAI
from langchain.chains import LLMChain
2023-07-27 23:22:07 +08:00
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
import json
2023-08-08 23:54:51 +08:00
from langchain.prompts.chat import ChatPromptTemplate
from typing import List, Optional
2023-08-08 23:54:51 +08:00
from server.chat.utils import History
from server.utils import get_prompt_template
from server.db.repository import add_chat_history_to_db, update_chat_history
2023-07-27 23:22:07 +08:00
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
history: List[History] = Body([],
description="历史对话",
examples=[[
{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
):
history = [History.from_data(h) for h in history]
2023-08-10 21:26:05 +08:00
2023-08-08 23:54:51 +08:00
async def chat_iterator(query: str,
history: List[History] = [],
model_name: str = LLM_MODEL,
prompt_name: str = prompt_name,
2023-08-08 23:54:51 +08:00
) -> AsyncIterable[str]:
2023-07-27 23:22:07 +08:00
callback = AsyncIteratorCallbackHandler()
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
2023-07-27 23:22:07 +08:00
)
prompt_template = get_prompt_template("llm_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
2023-08-08 23:54:51 +08:00
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
2023-08-08 23:54:51 +08:00
chain = LLMChain(prompt=chat_prompt, llm=model)
2023-07-27 23:22:07 +08:00
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
2023-08-08 23:54:51 +08:00
chain.acall({"input": query}),
2023-07-27 23:22:07 +08:00
callback.done),
)
answer = ""
chat_history_id = add_chat_history_to_db(chat_type="llm_chat", query=query)
2023-08-14 10:35:47 +08:00
if stream:
async for token in callback.aiter():
answer += token
2023-08-14 10:35:47 +08:00
# Use server-sent-events to stream the response
yield json.dumps(
{"text": token, "chat_history_id": chat_history_id},
ensure_ascii=False)
2023-08-14 10:35:47 +08:00
else:
async for token in callback.aiter():
answer += token
yield json.dumps(
{"text": answer, "chat_history_id": chat_history_id},
ensure_ascii=False)
2023-08-14 10:35:47 +08:00
if SAVE_CHAT_HISTORY and len(chat_history_id) > 0:
# 后续可以加入一些其他信息比如真实的prompt等
update_chat_history(chat_history_id, response=answer)
2023-07-27 23:22:07 +08:00
await task
2023-08-08 23:54:51 +08:00
return StreamingResponse(chat_iterator(query=query,
history=history,
model_name=model_name,
prompt_name=prompt_name),
media_type="text/event-stream")