Langchain-Chatchat/server/knowledge_base/kb_service/faiss_kb_service.py

170 lines
5.4 KiB
Python
Raw Normal View History

import os
import shutil
from configs.model_config import (
KB_ROOT_PATH,
CACHED_VS_NUM,
EMBEDDING_MODEL,
SCORE_THRESHOLD,
2023-09-08 20:48:31 +08:00
logger, log_verbose,
)
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
from functools import lru_cache
from server.knowledge_base.utils import get_vs_path, load_embeddings, KnowledgeFile
from langchain.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from typing import List, Dict, Optional
from langchain.docstore.document import Document
from server.utils import torch_gc, embedding_device
_VECTOR_STORE_TICKS = {}
@lru_cache(CACHED_VS_NUM)
def load_faiss_vector_store(
knowledge_base_name: str,
embed_model: str = EMBEDDING_MODEL,
embed_device: str = embedding_device(),
embeddings: Embeddings = None,
tick: int = 0, # tick will be changed by upload_doc etc. and make cache refreshed.
) -> FAISS:
logger.info(f"loading vector store in '{knowledge_base_name}'.")
vs_path = get_vs_path(knowledge_base_name)
if embeddings is None:
embeddings = load_embeddings(embed_model, embed_device)
if not os.path.exists(vs_path):
os.makedirs(vs_path)
if "index.faiss" in os.listdir(vs_path):
search_index = FAISS.load_local(vs_path, embeddings, normalize_L2=True)
else:
# create an empty vector store
doc = Document(page_content="init", metadata={})
search_index = FAISS.from_documents([doc], embeddings, normalize_L2=True)
ids = [k for k, v in search_index.docstore._dict.items()]
search_index.delete(ids)
search_index.save_local(vs_path)
2023-09-08 20:48:31 +08:00
if tick == 0: # vector store is loaded first time
_VECTOR_STORE_TICKS[knowledge_base_name] = 0
return search_index
def refresh_vs_cache(kb_name: str):
"""
make vector store cache refreshed when next loading
"""
_VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1
logger.info(f"知识库 {kb_name} 缓存刷新:{_VECTOR_STORE_TICKS[kb_name]}")
class FaissKBService(KBService):
vs_path: str
kb_path: str
def vs_type(self) -> str:
return SupportedVSType.FAISS
def get_vs_path(self):
return os.path.join(self.get_kb_path(), "vector_store")
def get_kb_path(self):
return os.path.join(KB_ROOT_PATH, self.kb_name)
def load_vector_store(self) -> FAISS:
return load_faiss_vector_store(
knowledge_base_name=self.kb_name,
embed_model=self.embed_model,
tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0),
)
def save_vector_store(self, vector_store: FAISS = None):
vector_store = vector_store or self.load_vector_store()
vector_store.save_local(self.vs_path)
return vector_store
def refresh_vs_cache(self):
refresh_vs_cache(self.kb_name)
def get_doc_by_id(self, id: str) -> Optional[Document]:
vector_store = self.load_vector_store()
return vector_store.docstore._dict.get(id)
def do_init(self):
self.kb_path = self.get_kb_path()
self.vs_path = self.get_vs_path()
def do_create_kb(self):
if not os.path.exists(self.vs_path):
os.makedirs(self.vs_path)
self.load_vector_store()
2023-08-07 16:56:57 +08:00
def do_drop_kb(self):
self.clear_vs()
shutil.rmtree(self.kb_path)
def do_search(self,
query: str,
top_k: int,
score_threshold: float = SCORE_THRESHOLD,
embeddings: Embeddings = None,
) -> List[Document]:
search_index = self.load_vector_store()
docs = search_index.similarity_search_with_score(query, k=top_k, score_threshold=score_threshold)
return docs
def do_add_doc(self,
docs: List[Document],
**kwargs,
) -> List[Dict]:
vector_store = self.load_vector_store()
ids = vector_store.add_documents(docs)
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)]
torch_gc()
if not kwargs.get("not_refresh_vs_cache"):
vector_store.save_local(self.vs_path)
self.refresh_vs_cache()
return doc_infos
2023-08-07 16:56:57 +08:00
def do_delete_doc(self,
kb_file: KnowledgeFile,
**kwargs):
vector_store = self.load_vector_store()
ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata.get("source") == kb_file.filepath]
if len(ids) == 0:
return None
vector_store.delete(ids)
if not kwargs.get("not_refresh_vs_cache"):
vector_store.save_local(self.vs_path)
self.refresh_vs_cache()
return vector_store
def do_clear_vs(self):
shutil.rmtree(self.vs_path)
os.makedirs(self.vs_path)
self.refresh_vs_cache()
def exist_doc(self, file_name: str):
if super().exist_doc(file_name):
return "in_db"
content_path = os.path.join(self.kb_path, "content")
if os.path.isfile(os.path.join(content_path, file_name)):
return "in_folder"
else:
return False
2023-08-27 11:21:10 +08:00
if __name__ == '__main__':
faissService = FaissKBService("test")
faissService.add_doc(KnowledgeFile("README.md", "test"))
faissService.delete_doc(KnowledgeFile("README.md", "test"))
faissService.do_drop_kb()
2023-09-08 20:48:31 +08:00
print(faissService.search_docs("如何启动api服务"))