Langchain-Chatchat/textsplitter/chinese_text_splitter.py

82 lines
4.7 KiB
Python
Raw Normal View History

2023-04-17 23:59:22 +08:00
from langchain.text_splitter import CharacterTextSplitter
import re
from typing import List
2023-05-06 23:26:49 +08:00
from configs.model_config import SENTENCE_SIZE
2023-04-17 23:59:22 +08:00
class ChineseTextSplitter(CharacterTextSplitter):
def __init__(self, pdf: bool = False, **kwargs):
super().__init__(**kwargs)
self.pdf = pdf
2023-05-06 23:56:39 +08:00
def split_text1(self, text: str, use_document_segmentation: bool = False) -> List[str]:
2023-05-05 23:38:53 +08:00
# use_document_segmentation参数指定是否用语义切分文档此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base论文见https://arxiv.org/abs/2107.09278
# 如果使用模型进行文档语义切分那么需要安装modelscope[nlp]pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
# 考虑到使用了三个模型可能对于低配置gpu不太友好因此这里将模型load进cpu计算有需要的话可以替换device为自己的显卡id
2023-04-17 23:59:22 +08:00
if self.pdf:
text = re.sub(r"\n{3,}", "\n", text)
text = re.sub('\s', ' ', text)
text = text.replace("\n\n", "")
2023-05-05 23:38:53 +08:00
if use_document_segmentation:
2023-05-07 12:06:09 +08:00
from modelscope.pipelines import pipeline
p = pipeline(
task="document-segmentation",
model='damo/nlp_bert_document-segmentation_chinese-base',
device="cpu")
2023-05-05 23:38:53 +08:00
result = p(documents=text)
sent_list = [i for i in result["text"].split("\n\t") if i]
2023-05-07 12:06:09 +08:00
return sent_list
2023-05-05 23:38:53 +08:00
else:
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del
sent_list = []
for ele in sent_sep_pattern.split(text):
if sent_sep_pattern.match(ele) and sent_list:
sent_list[-1] += ele
elif ele:
sent_list.append(ele)
2023-04-17 23:59:22 +08:00
return sent_list
2023-05-06 23:56:39 +08:00
def split_text(self, text: str, use_document_segmentation: bool = False) -> List[str]:
2023-05-06 23:26:49 +08:00
if self.pdf:
text = re.sub(r"\n{3,}", r"\n", text)
text = re.sub('\s', " ", text)
text = re.sub("\n\n", "", text)
2023-05-06 23:56:39 +08:00
if use_document_segmentation:
from modelscope.pipelines import pipeline
p = pipeline(
task="document-segmentation",
model='damo/nlp_bert_document-segmentation_chinese-base',
device="cpu")
result = p(documents=text)
sent_list = [i for i in result["text"].split("\n\t") if i]
return sent_list
else:
text = re.sub(r'([;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
text = re.sub(r'(\{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
text = re.sub(r'([;!?。!?\?]["’”」』]{0,2})([^;!?,。!?\?])', r'\1\n\2', text)
# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后注意前面的几句都小心保留了双引号
text = text.rstrip() # 段尾如果有多余的\n就去掉它
# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。
ls = [i for i in text.split("\n") if i]
for ele in ls:
if len(ele) > SENTENCE_SIZE:
ele1 = re.sub(r'([,.]["’”」』]{0,2})([^,.])', r'\1\n\2', ele)
ele1_ls = ele1.split("\n")
for ele_ele1 in ele1_ls:
if len(ele_ele1) > SENTENCE_SIZE:
ele_ele2 = re.sub(r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r'\1\n\2', ele_ele1)
ele2_ls = ele_ele2.split("\n")
for ele_ele2 in ele2_ls:
if len(ele_ele2) > SENTENCE_SIZE:
ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)
ele2_id = ele2_ls.index(ele_ele2)
ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[
ele2_id + 1:]
ele_id = ele1_ls.index(ele_ele1)
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
2023-04-17 23:59:22 +08:00
2023-05-06 23:56:39 +08:00
id = ls.index(ele)
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:]
return ls